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Oct 24, 2015

1. Consider an equilateral triangle ABC with sides of length 1. Extend AB
from A to A′ so that A lies between A′ and B, and the distance from A′

to A is x. Similarly extend AC to C ′ and CB to B′. Triangle A′B′C ′ will
also be equilateral. Find the smallest positive integer value for x so that
the sides of A′B′C ′ have integer lengths.

If one sets up a coordinate system with (0, 0) and (1, 0) as two vertices
of the original equilateral triangle, and (1/2,

√
3/2) as the third, say, with

one choice of labels it works out that A′ has coordinates (−x, 0) and B′

has coordinates ((x + 1)/2, (x + 1)
√

3/2). The square distance between
these points is then 3x2 + 3x + 1 and this needs to be an integer. Case by
case examination shows that taking x = 7 gives a square value, 169, for
3x2 + 3x + 1.

If we wanted more choices for x, there’s a better way to find them than
just trying possibilities one by one: rewrite the equation 3x2+3x+1 = m2

as (2m)2 −3(2n+1)2 = 1. This is a special case of u2 −3v2 = 1 and these
arise out of expanding powers of 2−

√
3 into the form a− b

√
3. The same

power of 2 +
√

3 will then be a + b
√

3 (give or take a ± that disappears
when we fix the parity of the power) and so a2 − 3b2 = 1.

2. Find
√

21 +

√

22 +

√

24 +
√

28 + · · ·

and give the answer in the form (a+
√

b)/
√

c where a, b, and c are positive
integers.

Let x be the answer. Then

x/
√

2 =

√

1 +

√

+
√

1 + · · · =

√

1 + x/
√

2.

Solve the quadratic equation x2/2 − x/
√

2 − 1 = 0 to get x/
√

2 = (1 +√
5)/2. Thus x = (1 +

√
5)/

√
2.

3. Find positive integers a and b such that for all positive integers k,

102(ak+b) + 10ak+b + 9

is divisible by 7.

We calculate mod 7. We have 100 ≡ 2 (mod 7) and 10 ≡ 3 (mod 7). So
102(ak+b) ≡ 2ak+b (mod 7), 10ak+b ≡ 3ak+b (mod 7), and 9 ≡ 2 (mod 7).
Note also that 23 ≡ 1 (mod 7) while 36 ≡ 1 (mod 7). So if we take a ≡ 6
(mod 7), whatever happens at one value of k happens at any other, just
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what we need. So we tentatively take a = 6 and look for a suitable value
of b. We may as well take k = 0 (the expression takes the same value mod
7 for any k, after all) and this leads to the requirement that 2b +3b +2 ≡ 0
(mod 7). Taking b = 1 works. We could also take b = 7, 13, 19, . . ., and we
could take a = 12, 18, 24, . . .. But out of these, a = 6, b = 1 is minimal.
The answer is a = 6, b = 1.

4. A half circle of radius 1 has two half circles inscribed along its base, each
of radius 1/2. These have further half-circles inscribed, the pattern con-
tinuing to all depths.

What is the sum of the areas of the black-colored portions? The two half-
disks that are removed each have one quarter the area of the original, so
the first black region has area half the original. The next four each have
1/32nd the area of the original, and the next 16 each have area 1/512th the
original area. The original area of the half-disk was π/2 so the geometric
series has first term π/4 and common ratio 1/4. Its sum is thus π/3.

5. A dartboard of radius r has zones bounded by circles of radius r/4, r/2,
and 3r/4, by the x and y axes, and by the lines y = ±x. What is the
farthest distance between two points in a single zone? There are two
contenders for this distance. The point furthest to the right is (r, 0). The
point on the line y = x at the edge of the board is r(1/

√
2, 1/

√
2), and

these two are further apart than the second of them and (3r/4, 0). The

maximal distance is r
√

2 −
√

2.

6. A polynomial p(z) is called suitable if it has the form

p(z) = (z − w1)(z − w2)(z − w3)(z − w4)

= (z − u1 − iv1)(z − u2 − iv2)(z − u3 − iv3)(z − u4 − iv4)

where each of the uj and vj ’s is an integer. Find a suitable polynomial
p(z) such that p(0) = 4, p(1) = 5, and for all z, (z2 + 2z + 2)p(z − 2) =
(z2 − 6z + 10)p(z).

Note that

(z + 1 + i)(z + 1 − i)(z − w1 − 2)(z − w2 − 2)(z − w3 − 2)(z − w4 − 2) =

= (z − 3 + i)(z − 3 − i)(z − w1)(z − w2)(z − w3)(z − w4).
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This suggests that perhaps w1 = −1 − i, w2 = −1 + i, and if that is so,
then after cancelling a factor of z2 + 2z + 2 from both sides we have

(z−3−i)(z−3+i)(z−w3−2)(z−w4−2) = (z−3−i)(z−3−i)(z−w3)(z−w4).

This now suggests that perhaps w3 = 1+ i, w4 = 1− i, and plugging those
in works. Multiplying out (z + 1− i)(z + 1− i)(z − 1− i)(z − 1 + i) gives
p(z) = z4 + 4.

7. For which values of c does the system of equations

xy = 2/c, x2 + y2 = c

have four distinct real solutions? The points on xy = K nearest the origin
are ±(

√
K(1, 1), at a distance of

√
2K from the origin. For the hyperbola

to meet the circle at all, we must have
√

2 · 2/c ≤ √
c. That happens

when c ≥ 2. To have four intersections, we must have c > 2.

8. A man has $ 1.70 in nickles, dimes, and quarters. He lists how many of
each he has, producing a list of the form (n, d, q). (It might read (4, 0, 6),
say, or (2, 1, 6), or (0, 17, 0).) How many possibilities are there for this
list? If there are 6 quarters, the other 20 cents can include 0, 1, or 2
dimes so there’s 3 lists. If there are 5 quarters, the number of dimes can
be anywhere from 0 to 4, so there are 5 lists. If 4 quarters, there are 8
choices for the number of dimes. If 3, there are 10 choices. If 2, there are
13 choices, if 1, there are 15 choices, and if he has no quarters, there are
18 choices for the number of dimes. All told, there are 72 possible lists.

9. A three dimensional chess board has 512 cubical ‘squares’. A queen, on
this board, can move in any direction a regular queen could move, in
any of the three 8 by 8 planes that include here square. She can also
move along any of the long diagonals through her position. What is the
maximum number of squares such a queen can get to in one move from
any particular position on the board? Put the queen at the ‘square’ (4,4,5)
for best results. In any of the plane three ‘boards’ through her position,
she has 13 ‘short diagonal’ moves. Moving like a rook, she can go up-
down, east-west, or north-south. Each of these three choices yields 7 more
moves. We’re up to 39 + 21 = 60 possible moves. Then there are the long
diagonals. There are four pairs of corners. Along the four long diagonals
she can reach 6, 7, 6, and 6 spots for a total of 25 more moves. All told,
she can reach 85 of the 511 squares of this board not counting the one she
starts on.

10. Find (log2 3)(log9 16). The rule is that loga b = ln b/ ln a. Now (ln 3/ ln 2) ·
(ln 16/ ln 9) simplifies because ln 9 = 2 ln 3 and ln 16 = 4 ln 2. So the
answer is 2.

11. Find the sum of the coordinates of all integer points strictly inside the
triangle with vertices (0, 0), (20, 8), and (21, 9). The answer is 68. There
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are three points: (12, 5), (17, 7), and (19, 8). If (x, y) is a point of the
sort required, then we must have 2/5 < y/x < 3/7 and x < 20. The
fractions between two rationals a/b and c/d such that bc−ad = 1 are gen-
erated (with increasing denominators) by inserting between two adjacent
fractions p/q and r/s the fraction (p + r)/(q + s). Thus we get

2

5
<

5

12
<

3

7
2

5
<

7

17
<

5

12
<

8

19
<

3

7

and no more may be inserted because the denominator would exceed 20.

12. An equilateral triangle with vertices (−1, 0, 0), (0, 1, 0), and (0, 0,
√

3)is
rotated around the z axis, forming a cone. A sphere is inscribed in the
cone, tangent at a point on the x-y plane and tangent to the curved surface
of the cone along a circle. A plane parallel to the x-y plane is also tangent
to the sphere at its top. This cuts off a little cone at the top of the big
cone. Find the ratio of the volume of the little cone to the volume of the
big cone.

The sphere cuts the x-z plane in a circle that is inscribed in the equilateral
triangle with base (±1, 0) and height

√
3. The center of that triangle is

(0, 1/
√

3) and the radius is 1/
√

3. Thus the height of the small cone is√
3 − 2/

√
3 = 1/

√
3. The small cone thus has 1/3 the height of the large

one, but the same shape. That means its volume is 1/27th the volume of
the big cone. The ratio is 1/27.

13. Given that x2 − y2 = 2 and x3 − y3 = 3, find x + y − (xy/(x + y)). The
answer is 3/2. We have

x + y − xy

x + y
=

x2 + xy + y2

x + y

=
(x − y)(x2 + xy + y2)

(x − y)(x + y)
=

x3 − y3

x2 − y2
=

3

2
.

14. Let

S =

2015
∑

k=1

1

k(k + 1)(k + 2)
=

1

1 · 2 · 3 +
1

2 · 3 · 4 + · · · + 1

2015 · 2016 · 2017
.

The decimal expansion of S has the form a.bcdefghijkl · · · . Find a, b, c,
and d. ANSWER: a = 0, b = 2, c = 4, and d = 9. We begin with the
observation that 1/(a(a + b)) = 1/b(1/a − 1/(a + b)). Using this twice on
each term in the original sum yields

S =
1

2

2015
∑

k=1

1

k
− 2

k + 1
+

1

k + 2
.
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This can be rewritten as

S =
1

2

(

2015
∑

k=1

[

1

k
− 1

k + 1

]

−
2015
∑

k=1

[

1

k + 1
− 1

k + 2

]

)

.

Each bracketed sum telescopes. The first telescopes to a bit less than 1
while the second telescopes to a (smaller) bit less than 1/2. Thus S is a
bit less than 1/4, and the decimal expansion of S starts off S = 0.249...
and so a = 0, b = 2, c = 4, and d = 9.

15. How many copies of 2 appear in the prime factorization of 100!/(50!)2? Of
the numbers 1 to 100, 50 are even. Of these, 25 are even again. Of these,
12 are even again, and so on. In all, we get 50 + 25 + 12 + 6 + 3 + 1 = 97
powers of 2 in 100!. Similarly, there are 25 + 12 + 6 + 3 + 1 = 47 powers
of 2 in 50!, so subtracting 94 powers of 2 that occur in the denominator
from the 97 in the numerator, we arrive at the answer: 3.

16. Find all ordered triples of integers (a, b, c) so that |a + b|+ |b + c| = 1 and
|a + b| + |a + c| = 3.

If a = 0, then |b| + |b + c| = 1 and |b| + |c| = 3. Thus |c| − |b + c| = 2. So
|c| ≥ 2 and b is even. But if b = 0 we get a contradiction 1 = 3, while if
|b| ≥ 2 we get the contradiction that 1 = |b| + |b + c| ≥ 2. So a 6= 0.

If |a| = 1 then |a + c| − |b + c| = 2 so b is odd. If |b| ≥ 3 then |a + b| ≥ 2
and we have another contradiction, so |b| = 1. Together with |a + b| ≤ 1
we conclude b = −a. We now need |c − a| = 1 and |c + a| = 3. There are
two ways this can happen: ±(1,−1, 2).

If a = 2, there are two sub-cases that stand a chance of giving something:
b = −1 and b = −2. If b = −1 we need | − 1 + c| = 0 so that c = 1 and
then |a + b| + |a + c| = 4. We cannot take b = −1 after all. If a = 2 and
b = −2, we must take c = 1. By similar logic, (−2, 2,−1) provides the
fourth and final solution. The whole list is ±(1,−1, 2) and ±(2,−2, 1).

17. Find the least prime p that divides 101010

+ 1010 + 10 − 1. Clearly p = 2
does not work. If p = 3, then the two smaller terms sum to 9 but the last
two are powers of ten and hence each are 1 mod 3, so the whole expression
is 2 mod 3. Clearly 5 does not work.

If p = 7 then any power of 10 is congruent to 4 mod 6, so as in a previous
problem, for any positive integer a, 10(10a) ≡ 104 (mod 7) ≡ 34 ≡ 4.
But 4 + 4 + 9 is not a multiple of 7, so 7 doesn’t work either. What
about p = 11? Any odd power of 10 is congruent to −1 mod 11, and
any even power of 10 is congruent to +1. So, and with a nod of thanks
to the William Lowell Putnam competition in which a related problem
was posed, the number we say is divisible by 11 is congruent, mod 11, to
1 + 1 − 1 − 1. That is, it’s divisible by 11 as claimed.

5


