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1. You purchase a stock and later sell it for $144 per share. When you do, you notice that the percent
increase was the same number as the original cost in dollars of each share. What was your original
cost per share?

Answer $80 .

Solution. Let x be the original cost of the stock. Then
(

1 +
x

100

)
x = 144, or x2+100x−14400 = 0.

Then
D

4
= 502 − (−14400) = 2500 + 14400 = 16900 = 1302 ⇒ x1,2 = −50± 130. The only positive

solution is x = $80 per share.

2. What is the coefficient of x13 after expanding and combining all like terms in the expression

(1 + x3 + x5)10.

Answer: 360 =
10!

7!2!
.

Solution. Note that the only solution of the equation 3k + 5l = 13 in nonnegative integers is
k = 1, l = 2 and in this case k+ l < 10. So the only way to obtain the term x13, when opening the
brackets of (1 + x3 + x5)10 is to pick up the term x3 from one of the factors , the term x5 from 2
of the factors and the term 1 from the rest, i.e. 7, factors. The number of ways to do this is equal

to
10!

1!2!7!
=

8 · 9 · 10

2
= 360 .

3. Numbers are placed in some points of a circle in the following way: in the first step, place 1’s at the
endpoints of a chosen diameter of the circle; these endpoints divide the circle into two semicircular
arcs. In the second step, at the midpoint of each of these semicircular arcs (i.e. at a point splitting
the arc into two equal parts), we place the sum of the numbers at their endpoints. In the third step,
at the midpoint of each of four arcs obtained in the previous step we place the sum of numbers at
the endpoints of this arc and so on. Let Sn be the sum of all numbers that are written on a circle
after making n steps. What is the ratio S2018/S2017?

Answer 3

Solution. Since each point of the circle marked in the first nth steps is the endpoint of exactly two
arcs, each number constructed in the first n steps is used twice in the construction of the numbers
in the (n + 1)st step. So the sum of all numbers , constructed in the (n + 1)st step is twice of
the sum of all numbers constructed in the first n steps. i.e. is equal to 2Sn. Therefore Sn+1,
being by definition the sum of all numbers constructed in the first n+ 1 steps, is equal to 3Sn. So,
Sn+1/Sn = 3 for any n.

4. One summer, the nations in the UK held a football (soccer) tournament where each team played
every other team. The results are summarized below:
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Team Won Lost Draw Goals For Goals Against

England 3 0 0 7 1
Ireland 1 1 1 2 3
Wales 1 1 1 3 3

Scotland 0 3 0 1 6

If England beat Ireland by a score of 3-0, how many total goals were scored between England and
Scotland?

Answer 2 .

Solution. Removing the England-Ireland result yields the following updated table

Team Won Lost Draw Goals For Goals Against

England 2 0 0 4 1
Ireland 1 0 1 2 0
Wales 1 1 1 3 3

Scotland 0 3 0 1 6

So Ireland had to draw 0-0 with Wales and beat Scotland 2-0. This means the scores in the
remaining Wales matches had to either both be 3-0 or both be 2-1 (one win, one loss). If they were
3-0, England would not have won their third match (1-1), so Wales beat Scotland 2-1. This means

England beat Scotland 2-0, for a total of 2 goals.

5. Find the minimal positive solution of the equation

cos2019 x− sin2019 x = 1. (1)

Answer
3π

2
.

Solution. We have the following chain of inequalities

cos2019 x− sin2019 x ≤ | cos2019 x− sin2019 x| ≤ | cos2019 x|+ | sin2019 x| ≤ cos2 x+ sin2 x = 1, (2)

where we used the triangle inequality for the second inequality and the fact that | cosx| ≤ 1 and
| sinx| ≤ 1 for the third inequality. So, x is a solution of (1) if and only if all inequalities in (2) are
actually the equalities.

The first inequality in the chain (2) is the equality if and only if cos2019 x ≥ sin2019 x. The first two
inequalities in the chain (2) are equalities if cos2019 x ≥ 0 and sin2019 x ≤ 0, and all three inequalities
in (2) are equalities if and only if either cosx = 1 and sinx = 0 or cosx = 0 and sinx = −1. The

first case implies that x = 2πn, n ∈ Z and the second case implies that x = −
π

2
+ 2πn, n ∈ Z.

Hence, the minimal positive solution is x =
3π

2
.

6. A single variable function f satisfies the following identity:

3f(x) + f(2− x) = x3 (3)
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for every x ∈ R. Find f(3).

Answer:
82

8
.

Solution. Plug 2− x instead of x into (3) to get

3f(2− x) + f(x) = (2− x)3. (4)

This gives us the system of two linear equations in f(x) and f(2− x):{
3f(x) + f(2− x) = x3

f(x) + 3f(2− x) = (2− x)3

Eliminate f(2−x) by subtracting the second equation from the tripled first equation. Then we get
8f(x) = 3x3 − (2− x)3, i.e.

f(x) =
1

8

(
3x3 − (2− x)3

)
This function satisfies (3), as can be verified by the direct substitution into (3). So, in fact we found
the unique function satisfying (3). Finally,

f(3) =
1

8
(3 · 33 − (−1)3) =

82

8

7. A differentiable single variable function f satisfies

f ′(sin2 x) = cos 2x+ tan2 x (5)

and f(0) = 2. Find f
(
1
2

)
.

Answer − ln
1

2
+

7

4
= ln 2 +

7

4
.

Solution. Note that cos 2x = 1 − 2 sin2 x and tan2 x =
sin2 x

1− sin2 x
. Using this and substituting

y = sin2 x into (5) we get

f ′(y) = 1− 2y +
y

1− y
=

1

1− y
− 2y.

Integrating both parts we have f(y) = − ln |1 − y| − y2 + C for some constant C. The condition
f(0) = 2 implies that C = 2. Hence f(y) = − ln |1− y| − y2 + 2. So,

f
(1

2

)
= − ln

1

2
− 1

4
+ 2 = − ln

1

2
+

7

4
= ln 2 +

7

4
.

8. Suppose f is a cubic polynomial with roots x, y, and z such that

x =
1

3− yz
, y =

1

5− zx
, z =

1

7− xy
.
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If f(0) = 1, compute f(xyz + 1).

Answer: −48 .

Solution. Let a be the leading coefficient of f , so that f(r) = a(r − x)(r − y)(r − z). Then
f(0) = −axyz = 1. From the three other equations given, we can rearrange to get

xyz + 1 = 3x = 5y = 7z

and thus f(xyz + 1) = a(xyz + 1 − x)(xyz + 1 − y)(xyz + 1 − z) = a(3x − x)(5y − y)(7z − z) =

axyz · 2 · 4 · 6 = −48 .

9. Dean and Deanna are throwing darts at the dartboard shown below, with alternating dark and
light regions delineated by concentric circles. The smallest circle (encircling the light region in the
center) has radius r, and each larger circle has radius 1 more than the next smaller circle, up to the
largest circle (encircling the entire dartboard) which has radius r + 11. Dean scores a point if he
throws a dart into a dark region, and Deanna scores a point if she throws a dart into a light region.
Assuming a dart will hit every point of the dartboard with equal probability, for which value of r
is the game fair (that is, both players are equally likely to score)?

Answer: 1 +
√

12 = 1 + 2
√

3 .

Solution. The area of the entire dartboard is π(r + 11)2, and the area of the six dark rings is
π
(
−r2 + (r + 1)2 − (r + 2)2 + · · ·+ (r + 11)2

)
. We simplify the expression on the left, observing

that the r2 terms cancel each other out:

π
(
−r2 + (r + 1)2 − (r + 2)2 + · · ·+ (r + 11)2

)
= π [(−0r + 2r − 4r + 6r − ...+ 22r)+

(−02 + 12 − 22 + · · ·+ 112)
]

= π [6 · 2r + (1 + 5 + 9 + 13 + 17 + 21)] = π(12r + 66) =
1

2
π(r + 11)2

Therefore, the problem is reduced to solving the equation: π(12r+66) = 1
2π(r+11)2. So 24r+132 =

r2 + 22r + 121 =⇒ r2 − 2r − 11 = 0. Then r = 2±
√
4+44
2 = 1 ±

√
12 = 1 ± 2

√
3. The radius is

obviously positive, so the answer is 1 +
√

12 = 1 + 2
√

3 .

(In general, if there are N dark rings, we have r = 1 +
√

2N . This problem is the N = 6 case.

10. What is the 100th digit to the right of the decimal point of decimal expansion of (1 +
√

2)500 ?

Answer 9 .
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Solution. (1 +
√

2)500 + (1−
√

2)500 is a positive integer since, in both expansions, all odd powers

of
√

2 have opposite signs. Further, |1−
√

2|500 <
(

1

2

)500

<

(
1

1000

)50

, or 10−150 (using the fact

that 210 > 103). Subtracting this number from our positive integer above yields a decimal with 150

leading 9’s, so the 100th digit is 9 .

11. You alternate tossing two weighted coins. The first coin you toss has a
2

3
chance of landing heads

and a
1

3
chance of landing tails; the second coin has a

1

4
chance of landing heads and a

3

4
chance

of landing tails. What is the probability that you will toss two heads in a row before you toss two
tails in a row?

Answer
13

33

Solution. We will describe the result of tossing by the words consisting of letters H and T with
H and T standing for heads and tails, respectively. Then HH comes before TT if and only if the
corresponding words are either

HTHT . . .HT︸ ︷︷ ︸
HT repeated k times

HH . . . (6)

or
THTH . . . TH︸ ︷︷ ︸

TH repeated k times

THH . . . (7)

for some k ≥ 0. The probability to get the word in (6) is

(
2

3
×

3

4

)k
2

3
×

1

4
=

(
1

2

)k
1

6
. The

probability to get the word in (7) is

(
1

3
×

1

4

)k
1

3
×

1

4
×

2

3
=

(
1

12

)k
1

18
. Then the total probability

of the required event is the sum of these probabilities over all nonnegative k, which can be computed
using the formula for the sum of the geometric progression:

1

6

∞∑
k=0

(
1

2

)k

+

∞∑
k=0

1

18

(
1

12

)k

=
1

6
×

1

1− 1
2

+
1

18
×

1

1− 1
12

=
1

3
+

2

33
=

13

33

.

12. A plane P in R3 is said to be a symmetry plane for a set S ⊂ R3 if the image of S under the mirror
reflection with respect to the plane P is equal to S (in other words, the mirror reflection preserves
S). Assume that S is the union of three lines such that there are two nonparallel lines among them.
What maximal possible number of symmetry planes may such set S have?

Answer 9 .

Solution. First note that if the three lines are all parallel then every plane perpendicular to them
is a plane of symmetry, so the assumption that there is a pair of nonparallel lines among them is
important to rule out the answer ∞. Now consider separately the following two cases:

(a) Assume that all three lines lie in the the same plane, denoted by P . Then obviously P is a plane
of symmetry. Since any mirror reflection, preserving the union of three lines, has to preserve
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P , any other plane of symmetry has to be perpendicular to P . Hence we can consider the
restriction of the corresponding mirror reflection to P so that it is the planar mirror reflection
with respect to the line in the intersection of P with the reflecting plane and the problem
becomes planar:

To describe the maximal number of lines of symmetry for three lines on a plane, if there are
two nonparallel lines among them.

Let us solve this planar problem. If a planar mirror reflection sends the union of three lines
with the property above to itself, then it must swap two lines and preserve one line (otherwise
all three lines are parallel, which is not allowed). Therefore the reflecting line must either
coincide with one of the lines or to be perpendicular to one of the lines. In the latter case
this perpendicular line is uniquely defined as follows: if the other two lines are intersecting,
then it must pass through their intersection point and if they are parallel, then it must be
the equidistant parallel line to them. This shows that to each line in our family of three lines
corresponds at most 2 lines of symmetries, so the total number of lines of symmetries does not
exceeds 3× 2 = 6. Note that the upper bound 6 is achieved, if we take three lines in the plane

intersecting in one point and dividing the plane into six sectors of equal angle
π

3
.

Hence , returning to the problem in R3, the maximal number of the plane of symmetries in
the considered case is 7 (because we also have to count the plane P itself).

(b) Assume that three lines are not in the same plane. By the argument similar to above, if a
mirror reflection sends the union of three lines to itself, then it either swap two lines and
preserves one line or preserve all three lines. In both cases at least one line is preserved. A
line l1 is preserved by a mirror reflection if and only if either the reflecting plane P contains
l1 or it is perpendicular to l1 .Consider this cases separately:

i. If P contains l1 , then by assumption either P does not contain only one of remaining line
or it does not contain both of remaining lines. Consider these subcases separately:

A. If P does not contain one of the remaining lines, say l2, then this line must be orthog-
onal to P , so P is uniquely determined by l1 and l2.

B. If P does not contain both of remaining lines, say l2 and l3 then l2 and l3 lie in the
same plane P̃ perpendicular to P such that l1 does not lie in P̃ (by our assumption)

and P uniquely determined by l1 and P̃ (it passes through l1 and P ∩ P̃ ).

ii. If P is perpendicular to l1, then consider the following cases for the other lines l2 and l3:

A. If l2 and l3 intersect, then P must pass through there point of intersection, so P is
uniquely determined by l1, l2, and l3;

B. If l2 and l3 are parallel , then P is not perpendicular to them, otherwise all three lines
are parallel, which is not allowed. So P must be equidistant and parallel to them.
Again P is uniquely determined by l1, l2, and l3;

C. If l2 and l3 are skew, they cannot be preserved or swapped by a mirror reflection, so
this case is impossible.

In summary, any mirror symmetry preserves a line and if it preserves a line, then there is at most
three possibilities for the plane of symmetries, described by iA, iB, and ii. So, there is at most
3×3 = 9 plane of symmetries. This upper bound is achieved, if we take three lines passing through
one point and perpendicular one to each other, for example, three axes of a Cartesian coordinate
system (x, y, z): the planes of symmetries are given by the following planes: x = 0, y = 0, z = 0, x =
y, x = −y, z = x, z = −x, z = y, and z = −y.
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Comparing the answers in (a) and (b) we get 9 as the answer.

13. Given a 2× 2 square, let A be the set of all points whose distance to the center of the square and
to the nearest edge of the square are equal. What is the area enclosed by A? Express your answer
in the form a+ b

√
c, where a and b are rational numbers and c is an integer.

Answer −20

3
+

16

3

√
2 .

Solution. Place the origin at the center of the square so all corners have coordinates (±1, ±1).
Choose a point (x, y) ∈ A which lies above the curve y = |x|. Then (x, 1) is the closest edge point,

so we have
√
x2 + y2 = (1−y), which can be rewritten as y =

1− x2

2
. By symmetry, the area inside

A is eight times the area between this curve and y = x in the first quadrant (see figure below).

1− x2

2
= x when x = −1 +

√
2. So the area is

8

∫ −1+√2

0

(
1− x2

2
− x
)
dx

= 4

(
x− 1

3
x3 − x2

)∣∣∣∣−1+
√
2

0

= 4

(
(−1 +

√
2)− 1

3
(−1 + 3

√
2− 6 + 2

√
2)− (1− 2

√
2 + 2)

)

= −20

3
+

16

3

√
2

14. Let D and E be points on the unit circle corresponding to the angles
2π

7
and

π

11
respectively.

Define S to be the region below
_

DE and above the x-axis and T to be the region to the left of
_

DE
and right of the y-axis. What is S + T?

Answer
15π

77
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Solution. Given the region below, S is the area of region DEGF , T is the area of region
DEIH, and C is the area of sector ODE. Then S = C + area(4OEG) − area(4ODF ) and
T = C + area(4ODH) − area(4OEI). Clearly, 4OEG ∼= 4OEI and 4ODF ∼= 4ODH,
so S + T = 2C (NOTE this is true independent of our choices of D and E!). So S + T =

2

(
1

2
(1)2

(
2π

7
− π

11

))
=

15π

77
.

15. Evaluate

lim
x→0

tan
(

tan(3x)
)
− sin

(
sin(3x)

)
tan(2x)− sin(2x)

(8)

Answer
27

4
.

Solution. Recall that the Maclaurin expansion of sinx and tanx up to the terms of order x3 are

sinx = x−
x3

6
+ o(x3), (9)

tanx = x+
x3

3
+ o(x3) (10)

Hence,

tan(2x)− sin(2x) =

(
8

3
+

8

6

)
x3 + o(x3) = 4x3 + o(x3). (11)

Further,

tan
(

tan(3x)
)

= tan
(

3x+
33x3

3
+ o(x3)

)
= tan

(
3x+ 9x3 + o(x3)

)
=

3x+ 9x3 +
1

3
(3x)3 + o(x3) = 3x+ 18x3 + o(x3); (12)

sin
(

sin(3x)
)

= sin
(

3x−
33x3

6
+ o(x3)

)
= sin

(
3x−

9

2
x3 + o(x3)

)
=

3x−
9

2
x3 − 1

6
(3x)3 + o(x3) = 3x− 9x3 + o(x3); (13)

Consequently,

tan
(

tan(3x)
)
− sin

(
sin(3x)

)
= 27x3 + o(x3). (14)
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Using (11) and (14) we get

tan
(

tan(3x)
)
− sin

(
sin(3x)

)
tan(2x)− sin(2x)

=
27x3 + o(x3)

4x3 + o(x3)
=

27

4
.

16. Nir has a blackboard that initially has the number 1 written on it. He repeatedly takes the most
recent number written on the blackboard, adds either 1, 2, or 3 to it, and writes that number next
to the existing numbers. He stops as soon as he writes a number greater than or equal to 100. At
the end, Nir notices remarkably that there are no multiples of 3 or 4 written on the blackboard.
How many different possible sequences of numbers could be on the blackboard?

Answer: 38 = 6561

Solution. Modulo 12, the only numbers Nir can write on the board are 1, 2, 5, 7, 10, 11. Further-
more, with the exception of 11 and 1, he cannot skip any of these numbers, since the distance
between the previous and the next number is greater than 3. So we see that the first number he
writes after the 1 is 2, and then we count how many ways there are for him to get from one number
congruent to 2 (mod 12) to the next one. Since only 11 and 1 can be skipped, but not both of
them, there are only the following three ways:

(a) nothing is skipped: 2, 5, 7, 10, 11, 1, 2;

(b) only 11 is skipped: 2, 5, 7, 10, 1, 2;

(c) only 1 is skipped: 2, 5, 7, 10, 11, 2.

Furthermore, Nir does this eight times, to get from 12 · 0 + 2 to 12 · 8 + 2 = 98. (Once he writes 98,

the next number he writes will be 101 and then he will stop.) So the answer is 38 = 6561 .

17. Consider all quadruples (x, y, z, w) satisfying the following system of equations: x2 + y2 = 9
z2 + w2 = 25
xw + yz = 15

(15)

What is the maximal possible value of x+ z for such quadruples?

Answer:
√

34 .

Solution. The system (15) can be interpreted in terms of the magnitudes and the dot product of
vectors a = (x, y) and b = (w, z). Indeed, (15) is equivalent to |a| = 3

|b| = 5
a · b = 15

(16)

Note that a · b = |a||b| cosφ, where φ is the angle between the vectors a and b. Hence, by (16),
15 = 15 cosφ. Therefore vectors a and b are collinear. Consequently, a = 3(cos θ, sin θ) and
b = 5(cos θ, sin θ) for some angle θ or, equivalently, x = 3 cos θ, y = 3 sin θ, w = 5 cos θ, z = 5 sin θ.
Now we have to find θ such that x + z = 3 cos θ + 5 sin θ is maximal possible. Using the property
of the dot product again (namely the Cauchy-Schwarz inequality) we get that

3 cos θ + 5 sin θ ≤
√

32 + 52
√

cos2 θ + sin2 θ =
√

34

9



and the equality is achieved if and only if the vectors (3, 5) and (cos θ, sin θ) are collinear, or

equivalently when cos θ =
3
√

34
and sin θ =

5
√

34
. Therefore, the maximal possible x+ z is equal to

√
34 .

18. Keyu randomly picks two real numbers from the interval (0, 3). Paawan randomly picks one real
number from the interval (1, 2). If all numbers are chosen independently, what is the probability
that Paawan’s number is strictly between Keyu’s two numbers?

Answer
13

27
.

Solution. Let k1 and k2 be Keyu’s numbers and p be Paawan’s number. There are nine
possibilities for the ordered pair (bk1c, bk2c), where bkc denotes the maximal integer number not
greater than k.

First, if bk1c = bk2c = 1, then the probability that Paawan’s number is between the two is 1
3 , since

if we randomly choose the three numbers from (1, 2), there is a 1
3 chance that the middle one is

Paawan’s. (We neglect the possibility of any number being exactly an integer; the probability of
this goes to zero since the distribution is continuous.)

If exactly one of (bk1c, bk2c) is 1, then p must be either greater or less than that value (WLOG
k1), independent of the value of k2; thus the probability in this case is 1

2 . (As a specific example,
suppose bk1c = 1 and bk2c = 0. Then p > k2, so we must have p < k1 and the probability is thus
k1 − 1. The average value of this as k1 goes from 1 to 2 is 1

2 . The other three cases are similar.)

If neither bk1c nor bk2c are equal to 1, but bk1c = bk2c, then p cannot possibly be between them
and the probability is zero. However, if bk1c 6= bk2c then p will be between them, with probability
1.

As a visual aid, the probabilities for each of these nine pairs are displayed in the grid below:

1
1

2
0

1

2

1

3

1

2

0
1

2
1

bk1c = 0 1 2

bk2c = 0

1

2

The average probability, then is 1
9

(
1 + 1

2 + 0 + 1
2 + 1

3 + 1
2 + 0 + 1

2 + 1
)

= 1
9 ·

13
3 =

13

27
.

19. Let a1, a2, a3, . . . be a sequence of positive integer numbers such that ai ≤ ai+1 and aak
= 3k for

every k. Find a110.

Answer: 191

Solution. First note that the sequence {ak} is strictly increasing, i.e. ak < ak+1 for every k.
Indeed, if there exists ak = ak+1 = n, then, on one hand, an = aak

= 3k and, on the other hand,
an = aak+1

= 3(k + 1), so we get a contradiction.
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Besides, a1 > 1, otherwise, if a1 = 1, then a1 = aa1
= 3, which leads to a contradiction.

Further, from the strict monotonicity, it follows that a1 < aa1
= 3. So, a1 = 2.

Hence a2 = aa1 = 3, a3 = aa2 = 6, a6 = aa3 = 9, a9 = aa6 = 18, a18 = aa9 = 27, a27 = aa18 = 54,
a54 = aa27 = 81, a81 = aa54 = 162, a162 = aa81 = 243. Note that

a162 − a81 = 243− 162 = 162− 81 = 81.

Hence from the strong monotonicity a82, a83, . . . , a162 are successive integers from 163 to 243 or,
equivalently, a81+k = 162 + k for all 1 ≤ k ≤ 81. In particular, a110 = a81+29 = 162 + 29 = 191 .

20. Consider four points in R3 that do not lie in the same plane. How many different parallelepipeds
have vertices at these points?

Answer 29 .
Solution. First fix a parallelepiped. To any choice of four non-coplanar vertices of a parallelepiped

assign the number of faces containing 3 chosen vertices. We call such faces rigid with respect to this
choice (since they are uniquely reconstructed from the choice). The number of rigid faces does not exceed
3. Otherwise there is two parallel rigid faces, each of which contains 3 chosen vertices, which contradicts
the fact that the total number of the chosen vertices is 4. Beside, for every integer k between 0 and 3
there exist a choice of 4 vertices with k rigid faces, as shown in the following figure:

Now, given four non-coplanar points, for every integer k between 0 and 3 calculate the number of
parallelepipeds such that these four points are vertices of them and the number of rigid faces with respect
to these vertices is equal to k:

1. Case k = 3. In this case the rigid faces have exactly one common vertex and the parallelepiped is
uniquely defined by this choice. Since any of the four points can be chosen as this common vertex
we have 4 parallelepipeds in this case.

2. Case k = 2. In this case the rigid faces have exactly one common edge. Any two of four points can
be taken as the endpoints of this edge., i.e. there are 6 ways to choose this common edge. Further,
if a common edge is chosen there are two ways to construct other two edges with endpoints among
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the original four points: one endpoint of the common edge can be connected to one of the remaining
two points to obtain one more edge and then the third edge is uniquely determined by connecting
the other endpoint of the common edge with the other remaining point. So, all together we have
6× 2 = 12 ways to construct parallelepipeds in the considered case.

3. Case k = 1. In this case there is exactly one rigid face and among 3 chosen vertices of it there
is exactly one that belongs to two edges. Call it A. Then the fourth chosen point must be the
opposite vertex of the parallelepiped.Call it B. The parallelepiped is uniquely determined by the
choice of A and B. Any of four given points can be taken as A, which gives 4 ways and, if A is
chosen, any of the remaining 3 points can be taken as B. So, all together we have 4× 3 = 12 ways
to construct parallelepipeds in the considered case.

4. Case k = 0. In this case there are no rigid faces, every face contains exactly two chosen vertices,
and they are not in the same edge. So any choice of two disjoint pairs of points among the given
four points defines two skew lines, which are diagonals of two parallel faces of the parallelogram
and so these two faces can be uniquely reconstructed from this two skew lines. Since we have three
choices of two disjoint pairs of points among the given four points, in this way we can reconstruct
the unique parallelepiped from four points in the considered case.

Combining all four cases we have 4 + 12 + 12 + 1 = 29 parallelepipeds.
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