On Roots of Polynomials over Prime Fields and the Roots of Unity

Tyler Feemster
Princeton University

July 23, 2019

Definition and Directions

Beginning Goal

To determine when a non-trivial root exists over \mathbb{F}_{p} of the polynomial

$$
f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}},
$$

where $a_{i} \in \mathbb{F}_{p}, x=\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{F}_{p}^{r}$, and $n_{i}>0$.

- The prime field \mathbb{F}_{p} is the set of integers modulo p where addition, subtraction, multiplication, and division are well-defined via modular arithmetic.
- If $f(x)=5+4 x_{1}^{2}$ in \mathbb{F}_{7}, we have roots $x_{1}=2$ and $x_{1}=5$.

Definition and Directions

Beginning Goal

To determine when a non-trivial root exists over \mathbb{F}_{p} of the polynomial

$$
f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}},
$$

where $a_{i} \in \mathbb{F}_{p}, x=\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{F}_{p}^{r}$, and $n_{i}>0$.

- The prime field \mathbb{F}_{p} is the set of integers modulo p where addition, subtraction, multiplication, and division are well-defined via modular arithmetic.

Definition and Directions

Beginning Goal

To determine when a non-trivial root exists over \mathbb{F}_{p} of the polynomial

$$
f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}},
$$

where $a_{i} \in \mathbb{F}_{p}, x=\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{F}_{p}^{r}$, and $n_{i}>0$.

- The prime field \mathbb{F}_{p} is the set of integers modulo p where addition, subtraction, multiplication, and division are well-defined via modular arithmetic.
- If $f(x)=5+4 x_{1}^{2}$ in \mathbb{F}_{7}, we have roots $x_{1}=2$ and $x_{1}=5$.

Chevalley-Warning Theorem and Ax's Extension

Chevalley-Warning Theorem 1935

Let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}$, where $a_{i} \in \mathbb{F}_{p}, x=\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{F}_{p}^{r}$, and $n_{i}>0$. If $\operatorname{deg}(f)<r$, then $f(x)$ has $0(\bmod p)$ roots.

Consider $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$ over \mathbb{F}_{11}. Since $(0,0,0)$ is a root, there must be at least 10 more.

Ax 1964
Let b be the largest positive integer strictly less than $r / \operatorname{deg}(f)$ Then, $f(x)$ has $0\left(\bmod p^{b}\right)$ roots.

Chevalley-Warning Theorem and Ax's Extension

Chevalley-Warning Theorem 1935

Let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}$, where $a_{i} \in \mathbb{F}_{p}, x=\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{F}_{p}^{r}$, and $n_{i}>0$. If $\operatorname{deg}(f)<r$, then $f(x)$ has $0(\bmod p)$ roots.

Consider $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$ over \mathbb{F}_{11}. there must be at least 10 more.
\square

Chevalley-Warning Theorem and Ax's Extension

Chevalley-Warning Theorem 1935

Let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}$, where $a_{i} \in \mathbb{F}_{p}, x=\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{F}_{p}^{r}$, and $n_{i}>0$. If $\operatorname{deg}(f)<r$, then $f(x)$ has $0(\bmod p)$ roots.

Consider $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$ over \mathbb{F}_{11}. Since $(0,0,0)$ is a root, there must be at least 10 more.

Chevalley-Warning Theorem and Ax's Extension

Chevalley-Warning Theorem 1935

Let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}$, where $a_{i} \in \mathbb{F}_{p}, x=\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{F}_{p}^{r}$, and $n_{i}>0$. If $\operatorname{deg}(f)<r$, then $f(x)$ has $0(\bmod p)$ roots.

Consider $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$ over \mathbb{F}_{11}. Since $(0,0,0)$ is a root, there must be at least 10 more.

Ax 1964

Let b be the largest positive integer strictly less than $r / \operatorname{deg}(f)$. Then, $f(x)$ has $0\left(\bmod p^{b}\right)$ roots.

Condition for Guaranteed Root

Again, let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}$ over \mathbb{F}_{p}.

- If there exists an n_{i} such that $\operatorname{gcd}\left(n_{i}, p-1\right)=1$, then there exists a non-trivial root automatically since $a_{i} x_{i}^{n_{i}}$ is a permutation of \mathbb{F}_{p}.
- If we consider the mapping $3 x^{5}$ over \mathbb{F}_{7}, we obtain:

- Now, we see that $f(x)=3 x_{1}^{5}+4 x_{2}^{3}$ has a root (7 actually).

Condition for Guaranteed Root

Again, let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}$ over \mathbb{F}_{p}.

- If there exists an n_{i} such that $\operatorname{gcd}\left(n_{i}, p-1\right)=1$, then there exists a non-trivial root automatically since $a_{i} x_{i}^{n_{i}}$ is a permutation of \mathbb{F}_{p}.
- If we consider the mapping $3 x^{5}$ over \mathbb{F}_{7}, we obtain:

Condition for Guaranteed Root

Again, let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}$ over \mathbb{F}_{p}.

- If there exists an n_{i} such that $\operatorname{gcd}\left(n_{i}, p-1\right)=1$, then there exists a non-trivial root automatically since $a_{i} x_{i}^{n_{i}}$ is a permutation of \mathbb{F}_{p}.
- If we consider the mapping $3 x^{5}$ over \mathbb{F}_{7}, we obtain:

Condition for Guaranteed Root

Again, let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}$ over \mathbb{F}_{p}.

- If there exists an n_{i} such that $\operatorname{gcd}\left(n_{i}, p-1\right)=1$, then there exists a non-trivial root automatically since $a_{i} x_{i}^{n_{i}}$ is a permutation of \mathbb{F}_{p}.
- If we consider the mapping $3 x^{5}$ over \mathbb{F}_{7}, we obtain:

Condition for Guaranteed Root

Again, let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}$ over \mathbb{F}_{p}.

- If there exists an n_{i} such that $\operatorname{gcd}\left(n_{i}, p-1\right)=1$, then there exists a non-trivial root automatically since $a_{i} x_{i}^{n_{i}}$ is a permutation of \mathbb{F}_{p}.
- If we consider the mapping $3 x^{5}$ over \mathbb{F}_{7}, we obtain:

- Now, we see that $f(x)=3 x_{1}^{5}+4 x_{2}^{3}$ has a root (7 actually).

Extending the Condition for Guaranteed Root

If $\operatorname{gcd}\left(n_{i}, p-1\right)=\operatorname{gcd}\left(n_{j}, p-1\right)=2$ for some n_{i} and n_{j}, then the image of $a_{i} x_{i}^{n_{i}}+a_{j} x_{j}^{n_{j}}$ is \mathbb{F}_{p}.

- The image of $a_{i} x_{i}^{n_{i}}$ has exactly $\frac{p-1}{2}+1$ elements in \mathbb{F}_{p}.
- Follows from $n_{i}=2 m$ where x^{m} permutes \mathbb{F}_{p}.
- Given $b \in \mathbb{F}_{p}$, the image of $h-a_{j} x_{j}^{n_{j}}$ has $\frac{p-1}{2}+1$ elements.
- The images of $b-a_{j} x_{j}^{n_{j}}$ and $a_{i} x_{i}^{n_{i}}$ have union of at most p elements, but $\left(\frac{p-1}{2}+1\right)+\left(\frac{p-1}{2}+1\right)=p+1$.
- So for some r_{i} and $r_{j}, b-a_{j} x_{j}^{n_{j}}=a_{i} x_{i}^{n_{i}}$.

Extending the Condition for Guaranteed Root

If $\operatorname{gcd}\left(n_{i}, p-1\right)=\operatorname{gcd}\left(n_{j}, p-1\right)=2$ for some n_{i} and n_{j}, then the image of $a_{i} x_{i}^{n_{i}}+a_{j} x_{j}^{n_{j}}$ is \mathbb{F}_{p}.

- The image of $a_{i} x_{i}^{n_{i}}$ has exactly $\frac{p-1}{2}+1$ elements in \mathbb{F}_{p}.
 elements, but $\left(\frac{p-1}{2}+1\right)+\left(\frac{p-1}{2}+1\right)=p+1$.

Extending the Condition for Guaranteed Root

If $\operatorname{gcd}\left(n_{i}, p-1\right)=\operatorname{gcd}\left(n_{j}, p-1\right)=2$ for some n_{i} and n_{j}, then the image of $a_{i} x_{i}^{n_{i}}+a_{j} x_{j}^{n_{j}}$ is \mathbb{F}_{p}.

- The image of $a_{i} x_{i}^{n_{i}}$ has exactly $\frac{p-1}{2}+1$ elements in \mathbb{F}_{p}.
- Follows from $n_{i}=2 m$ where x^{m} permutes \mathbb{F}_{p}.
- Given $b \in \mathbb{F}_{p}$, the image of $b-a_{j} x_{j}^{n_{j}}$ has $\frac{p-1}{2}+1$ elements.
 elements, but $\left(\frac{p-1}{2}+1\right)+\left(\frac{p-1}{2}+1\right)=p+1$.

Extending the Condition for Guaranteed Root

If $\operatorname{gcd}\left(n_{i}, p-1\right)=\operatorname{gcd}\left(n_{j}, p-1\right)=2$ for some n_{i} and n_{j}, then the image of $a_{i} x_{i}^{n_{i}}+a_{j} x_{j}^{n_{j}}$ is \mathbb{F}_{p}.

- The image of $a_{i} x_{i}^{n_{i}}$ has exactly $\frac{p-1}{2}+1$ elements in \mathbb{F}_{p}.
- Follows from $n_{i}=2 m$ where x^{m} permutes \mathbb{F}_{p}.
- Given $b \in \mathbb{F}_{p}$, the image of $b-a_{j} x_{j}^{n_{j}}$ has $\frac{p-1}{2}+1$ elements.
- The images of $b-a_{j} x_{j}^{n_{j}}$ and $a_{i} x_{i}^{n_{i}}$ have unio
elements, but $\left(\frac{p-1}{2}+1\right)+\left(\frac{p-1}{2}+1\right)=p+1$.

Extending the Condition for Guaranteed Root

If $\operatorname{gcd}\left(n_{i}, p-1\right)=\operatorname{gcd}\left(n_{j}, p-1\right)=2$ for some n_{i} and n_{j}, then the image of $a_{i} x_{i}^{n_{i}}+a_{j} x_{j}^{n_{j}}$ is \mathbb{F}_{p}.

- The image of $a_{i} x_{i}^{n_{i}}$ has exactly $\frac{p-1}{2}+1$ elements in \mathbb{F}_{p}.
- Follows from $n_{i}=2 m$ where x^{m} permutes \mathbb{F}_{p}.
- Given $b \in \mathbb{F}_{p}$, the image of $b-a_{j} x_{j}^{n_{j}}$ has $\frac{p-1}{2}+1$ elements.
- The images of $b-a_{j} x_{j}^{n_{j}}$ and $a_{i} x_{i}^{n_{i}}$ have union of at most p elements, but $\left(\frac{p-1}{2}+1\right)+\left(\frac{p-1}{2}+1\right)=p+1$.

Extending the Condition for Guaranteed Root

If $\operatorname{gcd}\left(n_{i}, p-1\right)=\operatorname{gcd}\left(n_{j}, p-1\right)=2$ for some n_{i} and n_{j}, then the image of $a_{i} x_{i}^{n_{i}}+a_{j} x_{j}^{n_{j}}$ is \mathbb{F}_{p}.

- The image of $a_{i} x_{i}^{n_{i}}$ has exactly $\frac{p-1}{2}+1$ elements in \mathbb{F}_{p}.
- Follows from $n_{i}=2 m$ where x^{m} permutes \mathbb{F}_{p}.
- Given $b \in \mathbb{F}_{p}$, the image of $b-a_{j} x_{j}^{n_{j}}$ has $\frac{p-1}{2}+1$ elements.
- The images of $b-a_{j} x_{j}^{n_{j}}$ and $a_{i} x_{i}^{n_{i}}$ have union of at most p elements, but $\left(\frac{p-1}{2}+1\right)+\left(\frac{p-1}{2}+1\right)=p+1$.
- So, for some x_{i} and $x_{j}, b-a_{j} x_{j}^{n_{j}}=a_{i} x_{i}^{n_{i}}$.

Pathological Polynomials

So, when are there no roots?

- Fermat's Little Theorem states that for any $x \in \mathbb{F}_{p}$, $x^{p-1} \in\{0,1\}$, so $x^{\frac{p-1}{2}} \in\{-1,0,1\}$.
- Consider x^{2} in \mathbb{F}_{5} :

$x_{1}^{3}+x_{2}^{3}-3$ has no roots over \mathbb{F}_{7},
$x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}-5$ has no roots over \mathbb{F}_{11}, etc.

Pathological Polynomials

So, when are there no roots?

- Fermat's Little Theorem states that for any $x \in \mathbb{F}_{p}$, $x^{p-1} \in\{0,1\}$, so $x^{\frac{p-1}{2}} \in\{-1,0,1\}$.

Pathological Polynomials

So, when are there no roots?

- Fermat's Little Theorem states that for any $x \in \mathbb{F}_{p}$, $x^{p-1} \in\{0,1\}$, so $x^{\frac{p-1}{2}} \in\{-1,0,1\}$.
- Consider x^{2} in \mathbb{F}_{5} :

$x_{1}^{3}+x_{2}^{3}-3$ has no roots over \mathbb{F}_{7},
$x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}-5$ has no roots over \mathbb{F}_{11}, etc.

Pathological Polynomials

So, when are there no roots?

- Fermat's Little Theorem states that for any $x \in \mathbb{F}_{p}$, $x^{p-1} \in\{0,1\}$, so $x^{\frac{p-1}{2}} \in\{-1,0,1\}$.
- Consider x^{2} in \mathbb{F}_{5} :

$x_{1}^{3}+x_{2}^{3}-3$ has no roots over \mathbb{F}_{7},

Pathological Polynomials

So, when are there no roots?

- Fermat's Little Theorem states that for any $x \in \mathbb{F}_{p}$, $x^{p-1} \in\{0,1\}$, so $x^{\frac{p-1}{2}} \in\{-1,0,1\}$.
- Consider x^{2} in \mathbb{F}_{5} :

$x_{1}^{3}+x_{2}^{3}-3$ has no roots over \mathbb{F}_{7},
$x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}-5$ has no roots over \mathbb{F}_{11}, etc.

Weil and his Bound

Weil 1949

Let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}, N$ be the number of roots of $f(x)+1$, and $d_{i}=\operatorname{gcd}\left(n_{i}, p-1\right)$. Then,

$$
\left|N-p^{r-1}\right| \leq\left(d_{1}-1\right) \cdots\left(d_{r}-1\right) p^{\frac{r-1}{2}}
$$

- If $d_{i}=1$ for any i, then $N=p^{r-1}$ exactly.
- If $d_{i} \geq 2$ for all i and $d_{i}=d_{j}=2$ for some i and j, then since $a_{i} x_{i}^{n_{i}}+a_{j} x_{j}^{n_{j}}$ can be anything, the other $r-2$ variables are totally free and $N \simeq p^{r-1}$.

Weil and his Bound

Weil 1949

Let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}, N$ be the number of roots of $f(x)+1$, and $d_{i}=\operatorname{gcd}\left(n_{i}, p-1\right)$. Then,

$$
\left|N-p^{r-1}\right| \leq\left(d_{1}-1\right) \cdots\left(d_{r}-1\right) p^{\frac{r-1}{2}}
$$

- If $d_{i}=1$ for any i, then $N=p^{r-1}$ exactly.
- If $d_{i} \geq 2$ for all i and $d_{i}=d_{j}=2$ for some i and j, then
since $a_{i} x_{i}^{n_{i}}+a_{j} x_{j}^{n_{j}}$ can be anything, the other $r-2$
variables are totally free and $N \simeq p^{r-1}$

Weil and his Bound

Weil 1949

Let $f(x)=\sum_{i=1}^{r} a_{i} x_{i}^{n_{i}}, N$ be the number of roots of $f(x)+1$, and $d_{i}=\operatorname{gcd}\left(n_{i}, p-1\right)$. Then,

$$
\left|N-p^{r-1}\right| \leq\left(d_{1}-1\right) \cdots\left(d_{r}-1\right) p^{\frac{r-1}{2}}
$$

- If $d_{i}=1$ for any i, then $N=p^{r-1}$ exactly.
- If $d_{i} \geq 2$ for all i and $d_{i}=d_{j}=2$ for some i and j, then since $a_{i} x_{i}^{n_{i}}+a_{j} x_{j}^{n_{j}}$ can be anything, the other $r-2$ variables are totally free and $N \simeq p^{r-1}$.

Univariate Polynomials and Roots of Unity

Multivariate polynomials over \mathbb{F}_{p} are bad, but univariate polynomials over \mathbb{F}_{p} are terrible!

- Consider $x^{p}-x$ over \mathbb{F}_{p}. By Fermat's Little Theorem, $x^{p}=x$, so every element of the field is a root.
- Also, $x^{p}-x+1$ has no roots. These roots clearly do not behave well.

But, hope is not lost! Univariate Polynomials are very well-understood over the roots of unity.

Univariate Polynomials and Roots of Unity

Multivariate polynomials over \mathbb{F}_{p} are bad, but univariate polynomials over \mathbb{F}_{p} are terrible!

- Consider $x^{p}-x$ over \mathbb{F}_{p}. By Fermat's Little Theorem, $x^{p}=x$, so every element of the field is a root.
- Also, $x^{p}-x+1$ has no roots. These roots clearly do not behave well.

But, hope is not lost! Univariate Polynomials are very well-understood over the roots of unity.

Univariate Polynomials and Roots of Unity

Multivariate polynomials over \mathbb{F}_{p} are bad, but univariate polynomials over \mathbb{F}_{p} are terrible!

- Consider $x^{p}-x$ over \mathbb{F}_{p}. By Fermat's Little Theorem, $x^{p}=x$, so every element of the field is a root.

But, hope is not lost! Univariate Polynomials are very well-understood over the roots of unity.

Univariate Polynomials and Roots of Unity

Multivariate polynomials over \mathbb{F}_{p} are bad, but univariate polynomials over \mathbb{F}_{p} are terrible!

- Consider $x^{p}-x$ over \mathbb{F}_{p}. By Fermat's Little Theorem, $x^{p}=x$, so every element of the field is a root.
- Also, $x^{p}-x+1$ has no roots. These roots clearly do not behave well.

But, hope is not lost! Univariate Polynomials are very well-understood over the roots of unity.

Univariate Polynomials and Roots of Unity

Multivariate polynomials over \mathbb{F}_{p} are bad, but univariate polynomials over \mathbb{F}_{p} are terrible!

- Consider $x^{p}-x$ over \mathbb{F}_{p}. By Fermat's Little Theorem, $x^{p}=x$, so every element of the field is a root.
- Also, $x^{p}-x+1$ has no roots. These roots clearly do not behave well.

But, hope is not lost! Univariate Polynomials are very well-understood over the roots of unity.

Polynomials and Roots of Unity

Cheng 2007

We now have a deterministic (nonrandomized), polynomial time algorithm for deciding if the nth primitive root of unity ω_{n} satisfies $\sum_{i=1}^{k} c_{i} \omega_{n}^{e_{i}}=0$, where $c_{i} \in \mathbb{Z}$.

- Previously, only randomized algorithms were known.
- He found a way to churn down lengthy polynomials with roots of unity having huge order into smaller ones and then using previously known techniques to do the rest.

Polynomials and Roots of Unity

Cheng 2007

We now have a deterministic (nonrandomized), polynomial time algorithm for deciding if the nth primitive root of unity ω_{n} satisfies $\sum_{i=1}^{k} c_{i} \omega_{n}^{e_{i}}=0$, where $c_{i} \in \mathbb{Z}$.

- Previously, only randomized algorithms were known.
- He found a way to churn down lengthy polynomials with
roots of unity having huge order into smaller ones and then
using previously known techniques to do the rest.

Polynomials and Roots of Unity

Cheng 2007

We now have a deterministic (nonrandomized), polynomial time algorithm for deciding if the nth primitive root of unity ω_{n} satisfies $\sum_{i=1}^{k} c_{i} \omega_{n}^{e_{i}}=0$, where $c_{i} \in \mathbb{Z}$.

- Previously, only randomized algorithms were known.
- He found a way to churn down lengthy polynomials with roots of unity having huge order into smaller ones and then using previously known techniques to do the rest.

The Possible Connection

Dvornicich and Zannier 2002

Essentially, roots of unity ζ_{i} satisfying $\sum_{i=0}^{k-1} a_{i} \zeta_{i} \equiv 0(\bmod p)$ are no more complicated than those satisfying $\sum_{i=0}^{k-1} a_{i} \zeta_{i}=0$, where $a_{i} \in \mathbb{Q}$.

- In fact, the independence of the roots of unity are bounded tightly below by essentially the same equation involving prime factors of the total order.
- Looking forward, we may be able to find and substitute portions of univariate polynomials with sums of roots of unity.

The Possible Connection

Dvornicich and Zannier 2002

Essentially, roots of unity ζ_{i} satisfying $\sum_{i=0}^{k-1} a_{i} \zeta_{i} \equiv 0(\bmod p)$ are no more complicated than those satisfying $\sum_{i=0}^{k-1} a_{i} \zeta_{i}=0$, where $a_{i} \in \mathbb{Q}$.

- In fact, the independence of the roots of unity are bounded tightly below by essentially the same equation involving prime factors of the total order.
- Looking forward, we may be able to find and substitute portions of univariate polynomials with sums of roots of unity.

Acknowledgements

I would like to thank Texas A\&M, Dr. Maurice Rojas, Joann Coronado, Thomas Yahl, Nida Obatake, and the National Science Foundation.

