Neural Bonanza III: The Final Bonanza Pt. 1

Brianna Gambacini

University of Connecticut

REU 2019
Texas A\&M University Joint work with Sam Macdonald (Willamette)

July 22, 2019

Outline

- Biological motivation
- Definitions
- Disproving conjectures
- Main question
- Future research

Biological Motivation

- Place cells in hippocampus
- Encode data
- Maps environment
- Convex place fields

Biological Motivation

- Place cells in hippocampus
- Encode data
- Maps environment
- Convex place fields

Relation to Mathematics

Can we find criteria to classify neural codes as convex given only the structure of the code?

Important Definitions

Open/Closed Convex Codes

A code $C \subset 2^{[n]}$ is open (or closed) convex if there exist open (or closed) convex subsets $U_{1}, U_{2}, \ldots U_{n} \subseteq \mathbb{R}^{d}$, for some d, that generate the code.

Open Convex

Closed Convex

Important Definitions

3-Sparse

A code C is 3 -sparse if no codeword is longer than 3 neurons.

$$
\text { Let } C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Important Definitions

3-Sparse

A code C is 3 -sparse if no codeword is longer than 3 neurons.

$$
\text { Let } C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Facet

A codeword $\sigma \in C$ is a facet if it is a maximal element of C with respect to inclusion, that is, $\sigma \nsubseteq \alpha$ for all $\alpha \in C$ such that $\alpha \neq \sigma$.

Important Definitions

3-Sparse

A code C is 3 -sparse if no codeword is longer than 3 neurons.

$$
\text { Let } C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Facet

A codeword $\sigma \in C$ is a facet if it is a maximal element of C with respect to inclusion, that is, $\sigma \nsubseteq \alpha$ for all $\alpha \in C$ such that $\alpha \neq \sigma$.

Here, our facets are $\{123,124,34\}$

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Max-Intersection-Complete

A code C is max-intersection complete if all the intersections of its facets are in C.

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Max-Intersection-Complete

A code C is max-intersection complete if all the intersections of its facets are in C.

- Facets: $\{123,124,34\}$

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Max-Intersection-Complete

A code C is max-intersection complete if all the intersections of its facets are in C.

- Facets: $\{123,124,34\}$
- Intersections: $12=123 \cap 124,3=123 \cap 34,4=124 \cap 34$

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Max-Intersection-Complete

A code C is max-intersection complete if all the intersections of its facets are in C.

- Facets: $\{123,124,34\}$
- Intersections: $12=123 \cap 124,3=123 \cap 34,4=124 \cap 34$
- $\{12,3,4\} \subseteq C$

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Max-Intersection-Complete

A code C is max-intersection complete if all the intersections of its facets are in C.

- Facets: $\{123,124,34\}$
- Intersections: $12=123 \cap 124,3=123 \cap 34,4=124 \cap 34$
- $\{12,3,4\} \subseteq C$
- So C is max-intersection complete

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Simplicial Complex

We define the simplicial complex of a code C as:
$\Delta(C):=\{\sigma \subseteq[n]: \sigma \subseteq \alpha$ for some $\alpha \in C\}$

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Simplicial Complex

We define the simplicial complex of a code C as: $\Delta(C):=\{\sigma \subseteq[n]: \sigma \subseteq \alpha$ for some $\alpha \in C\}$

$$
\Delta(C)=\{\underline{123}, \underline{124}, \underline{34}, 12,13,14,23,24,34,1,2,3,4, \emptyset\}
$$

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Simplicial Complex

We define the simplicial complex of a code C as:
$\Delta(C):=\{\sigma \subseteq[n]: \sigma \subseteq \alpha$ for some $\alpha \in C\}$

$$
\Delta(C)=\{\underline{123}, \underline{124}, \underline{34}, 12,13,14,23,24,34,1,2,3,4, \emptyset\}
$$

Link

For a simplicial complex Δ and some $\sigma \in \Delta$, the link of σ is defined as: $\operatorname{Lk}_{\sigma}(\Delta):=\{\tau \subseteq[n] \backslash \sigma: \sigma \cup \tau \in \Delta\}$

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Simplicial Complex

We define the simplicial complex of a code C as:
$\Delta(C):=\{\sigma \subseteq[n]: \sigma \subseteq \alpha$ for some $\alpha \in C\}$

$$
\Delta(C)=\{\underline{123}, \underline{124}, \underline{34}, 12,13,14,23,24,34,1,2,3,4, \emptyset\}
$$

Link

For a simplicial complex Δ and some $\sigma \in \Delta$, the link of σ is defined as: $\operatorname{Lk}_{\sigma}(\Delta):=\{\tau \subseteq[n] \backslash \sigma: \sigma \cup \tau \in \Delta\}$

$$
\operatorname{Lk}_{\{3\}}(\Delta(C))=\{12,4,1,2, \emptyset\}
$$

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Mandatory

A word $\sigma \in \Delta(C)$ is mandatory if $\operatorname{Lk}_{\sigma}(\Delta(C))$ is not contractible. Similarly, σ is non-mandatory if $\mathrm{Lk}_{\sigma}(\Delta(C))$ is contractible.

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Mandatory

A word $\sigma \in \Delta(C)$ is mandatory if $\operatorname{Lk}_{\sigma}(\Delta(C))$ is not contractible. Similarly, σ is non-mandatory if $\mathrm{Lk}_{\sigma}(\Delta(C))$ is contractible.

$$
\begin{array}{cc}
\operatorname{Lk}_{\{3\}}(\Delta(C))=\{12,4,1,2, \emptyset\} & \operatorname{Lk}_{\{1\}}(\Delta(C))=\{23,24,2,3,4, \emptyset\} \\
\bullet \longrightarrow
\end{array}
$$

Important Definitions

$$
C=\{123,124,12,13,34,1,3,4, \emptyset\}
$$

Mandatory

A word $\sigma \in \Delta(C)$ is mandatory if $\operatorname{Lk}_{\sigma}(\Delta(C))$ is not contractible. Similarly, σ is non-mandatory if $\mathrm{Lk}_{\sigma}(\Delta(C))$ is contractible.

$$
\begin{array}{cc}
\operatorname{Lk}_{\{3\}}(\Delta(C))=\{12,4,1,2, \emptyset\} & \operatorname{Lk}_{\{1\}}(\Delta(C))=\{23,24,2,3,4, \emptyset\} \\
\stackrel{\bullet}{1} & 2
\end{array}
$$

Locally Good

A code is locally good if it contains all of its mandatory codewords.

Disproven Conjectures: Goldrup and Phillipson

Conjecture (Goldrup and Phillipson 2014)

Let C be a code that is open convex, not max intersection-complete, and has at least two non-mandatory codewords. Suppose C has at least 3 facets M_{1}, M_{2}, M_{3}, and there is $\sigma \in C$ such that $\sigma \subset M_{1}$ and $\sigma \cap M_{2} \notin C$. Then C is not a closed convex code.

$$
C=\{\underline{135}, \underline{123}, \underline{236}, \underline{124}, 12,13,14,23,24,1,2, \emptyset\}
$$

Goldrup and Phillipson Conjecture

- Open convex

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete
- $135 \cap 236=3 \notin C$

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete
- $135 \cap 236=3 \notin C$
- ≥ 2 non-mandatory words

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete
- $135 \cap 236=3 \notin C$
- ≥ 2 non-mandatory words
- $\operatorname{Lk}_{\{3\}}(\Delta)=\{15,12,26, \emptyset\}$
- $\operatorname{Lk}_{\{4\}}(\Delta)=\{12, \emptyset\}$

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete
- $135 \cap 236=3 \notin C$
- ≥ 2 non-mandatory words
- $\operatorname{Lk}_{\{3\}}(\Delta)=\{15,12,26, \emptyset\}$
- $\operatorname{Lk}_{\{4\}}(\Delta)=\{12, \emptyset\}$
- ≥ 3 facets M_{1}, M_{2}, M_{3}

$C=\{1,13,14,135,123,12$,
$124,236,23,24,2, \emptyset\}$

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete
- $135 \cap 236=3 \notin C$
- ≥ 2 non-mandatory words
- $\operatorname{Lk}_{\{3\}}(\Delta)=\{15,12,26, \emptyset\}$
- $\operatorname{Lk}_{\{4\}}(\Delta)=\{12, \emptyset\}$

- ≥ 3 facets M_{1}, M_{2}, M_{3}
$C=\{1,13,14, \underline{135}, \underline{123}, 12$,
- $M_{1}=123, M_{2}=236, M_{3}=135$

$$
124,236,23,24,2, \emptyset\}
$$

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete
- $135 \cap 236=3 \notin C$
- ≥ 2 non-mandatory words
- $\operatorname{Lk}_{\{3\}}(\Delta)=\{15,12,26, \emptyset\}$
- $\operatorname{Lk}_{\{4\}}(\Delta)=\{12, \emptyset\}$

- ≥ 3 facets M_{1}, M_{2}, M_{3}
$C=\{1,13,14, \underline{135}, \underline{123}, 12$,
- $\left.M_{1}=123, M_{2}=236, M_{3}=135 \underline{124}, \underline{236}, 23,24,2, \emptyset\right\}$
- $\sigma \in C$ such that:
- $\sigma \subset M_{1}$.

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete
- $135 \cap 236=3 \notin C$
- ≥ 2 non-mandatory words
- $\operatorname{Lk}_{\{3\}}(\Delta)=\{15,12,26, \emptyset\}$
- $\operatorname{Lk}_{\{4\}}(\Delta)=\{12, \emptyset\}$

- ≥ 3 facets M_{1}, M_{2}, M_{3}
$C=\{1,13,14, \underline{135}, \underline{123}, 12$,
- $\left.M_{1}=123, M_{2}=236, M_{3}=135 \underline{124}, \underline{236}, 23,24,2, \emptyset\right\}$
- $\sigma \in C$ such that:
- $\sigma \subset M_{1}$. Let $\sigma=13.13 \subset 123$

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete
- $135 \cap 236=3 \notin C$
- ≥ 2 non-mandatory words
- $\operatorname{Lk}_{\{3\}}(\Delta)=\{15,12,26, \emptyset\}$
- $\operatorname{Lk}_{\{4\}}(\Delta)=\{12, \emptyset\}$

- ≥ 3 facets M_{1}, M_{2}, M_{3}
$C=\{1,13,14, \underline{135}, \underline{123}, 12$,
- $\left.M_{1}=123, M_{2}=236, M_{3}=135 \underline{124}, \underline{236}, 23,24,2, \emptyset\right\}$
- $\sigma \in C$ such that:
- $\sigma \subset M_{1}$. Let $\sigma=13.13 \subset 123$
- $\sigma \cap M_{2} \notin C$.

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete
- $135 \cap 236=3 \notin C$
- ≥ 2 non-mandatory words
- $\operatorname{Lk}_{\{3\}}(\Delta)=\{15,12,26, \emptyset\}$
- $\operatorname{Lk}_{\{4\}}(\Delta)=\{12, \emptyset\}$

- ≥ 3 facets M_{1}, M_{2}, M_{3}
$C=\{1,13,14, \underline{135}, \underline{123}, 12$,
- $\left.M_{1}=123, M_{2}=236, M_{3}=135 \underline{124}, \underline{236}, 23,24,2, \emptyset\right\}$
- $\sigma \in C$ such that:
- $\sigma \subset M_{1}$. Let $\sigma=13.13 \subset 123$
- $\sigma \cap M_{2} \notin C .13 \cap 236=3 \notin C$

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete
- $135 \cap 236=3 \notin C$
- ≥ 2 non-mandatory words
- $\operatorname{Lk}_{\{3\}}(\Delta)=\{15,12,26, \emptyset\}$
- $\operatorname{Lk}_{\{4\}}(\Delta)=\{12, \emptyset\}$

- ≥ 3 facets M_{1}, M_{2}, M_{3}
- $\left.M_{1}=123, M_{2}=236, M_{3}=135 \underline{124}, \underline{236}, 23,24,2, \emptyset\right\}$
- $\sigma \in C$ such that:
- $\sigma \subset M_{1}$. Let $\sigma=13.13 \subset 123$
- $\sigma \cap M_{2} \notin C .13 \cap 236=3 \notin C$

Then the Conjecture says C is not closed convex...

Goldrup and Phillipson Conjecture

- Open convex
- Not max- \cap-complete
- $135 \cap 236=3 \notin C$
- ≥ 2 non-mandatory words
- $\operatorname{Lk}_{\{3\}}(\Delta)=\{15,12,26, \emptyset\}$
- $\operatorname{Lk}_{\{4\}}(\Delta)=\{12, \emptyset\}$

- ≥ 3 facets M_{1}, M_{2}, M_{3}
$C=\{1,13,14, \underline{135}, \underline{123}, 12$,
- $\left.M_{1}=123, M_{2}=236, M_{3}=135 \underline{ } \underline{(124}, \underline{236}, 23,24,2, \emptyset\right\}$
- $\sigma \in C$ such that:
- $\sigma \subset M_{1}$. Let $\sigma=13.13 \subset 123$
- $\sigma \cap M_{2} \notin C .13 \cap 236=3 \notin C$

Then the Conjecture says C is not closed convex... but this is false!

Main Question

What we already know:

- Convex \Rightarrow locally good

Main Question

What we already know:

- Convex \Rightarrow locally good
- 2-sparse, locally good \Rightarrow convex

Main Question

What we already know:

- Convex \Rightarrow locally good
- 2-sparse, locally good \Rightarrow convex
- 4^{+}-sparse, locally good \nRightarrow convex

Main Question

What we already know:

- Convex \Rightarrow locally good
- 2-sparse, locally good \Rightarrow convex
- 4^{+}-sparse, locally good \nRightarrow convex
- But what about 3 -sparse codes?

Main Question

What we already know:

- Convex \Rightarrow locally good
- 2-sparse, locally good \Rightarrow convex
- 4^{+}-sparse, locally good \nRightarrow convex
- But what about 3-sparse codes?

Conjecture 1

If a 3-sparse neural code is locally good, then it must be closed convex.

Main Question

What we already know:

- Convex \Rightarrow locally good
- 2-sparse, locally good \Rightarrow convex
- 4^{+}-sparse, locally good \nRightarrow convex
- But what about 3 -sparse codes?

Conjecture 1

If a 3-sparse neural code is locally good, then it must be closed convex.

Conjecture 2

If a 3-sparse neural code is locally good, then it must be open convex.

Closed Convex

Conjecture 1

If a 3-sparse neural code is locally good, then it must be closed convex.

$$
C=\{123,124,235,12,14,23,35,45,4,5, \emptyset\}
$$

Recall: Open convex \Rightarrow locally good

Closed Convex

Open Convex

Theorem 4.3 (G. and Macdonald)

Let C be a neural code on n neurons with a closed convex cover $U=\left\{U_{i}\right\}_{i=1}^{n}$ in \mathbb{R}^{d} that is fully dimensional. For $\sigma \subset[n]$, we define $U_{\sigma}=\cap_{i \in \sigma} U_{i}$. If there does not exist an $\alpha \in C$ such that U_{α} consists of a set that cannot be drawn in \mathbb{R}^{d-1} or higher, then C is open convex.

Open Convex

Theorem 4.3 (G. and Macdonald)

Let C be a neural code on n neurons with a closed convex cover $U=\left\{U_{i}\right\}_{i=1}^{n}$ in \mathbb{R}^{d} that is fully dimensional. For $\sigma \subset[n]$, we define $U_{\sigma}=\cap_{i \in \sigma} U_{i}$. If there does not exist an $\alpha \in C$ such that U_{α} consists of a set that cannot be drawn in \mathbb{R}^{d-1} or higher, then C is open convex.

Open Convex

Theorem 4.3 (G. and Macdonald)

Let C be a neural code on n neurons with a closed convex cover $U=\left\{U_{i}\right\}_{i=1}^{n}$ in \mathbb{R}^{d} that is fully dimensional. For $\sigma \subset[n]$, we define $U_{\sigma}=\cap_{i \in \sigma} U_{i}$. If there does not exist an $\alpha \in C$ such that U_{α} consists of a set that cannot be drawn in \mathbb{R}^{d-1} or higher, then C is open convex.

Open Convex

Theorem 4.3 (G. and Macdonald)

Let C be a neural code on n neurons with a closed convex cover $U=\left\{U_{i}\right\}_{i=1}^{n}$ in \mathbb{R}^{d} that is fully dimensional. For $\sigma \subset[n]$, we define $U_{\sigma}=\cap_{i \in \sigma} U_{i}$. If there does not exist an $\alpha \in C$ such that U_{α} consists of a set that cannot be drawn in \mathbb{R}^{d-1} or higher, then C is open convex.

Open Convex

Theorem 4.3 (G. and Macdonald)

Let C be a neural code on n neurons with a closed convex cover $U=\left\{U_{i}\right\}_{i=1}^{n}$ in \mathbb{R}^{d} that is fully dimensional. For $\sigma \subset[n]$, we define $U_{\sigma}=\cap_{i \in \sigma} U_{i}$. If there does not exist an $\alpha \in C$ such that U_{α} consists of a set that cannot be drawn in \mathbb{R}^{d-1} or higher, then C is open convex.

Open Convex

Lemma 4.4 (G. and Macdonald)

Let C be a neural code on n neurons with a closed convex cover $U=\left\{U_{i}\right\}_{i=1}^{n}$ in \mathbb{R}^{d}. If there exists a U_{α} that can only be expressed in \mathbb{R}^{d-2} or below and is the intersection of exactly two sets in U, then C is open convex.

Open Convex

Lemma 4.4 (G. and Macdonald)

Let C be a neural code on n neurons with a closed convex cover $U=\left\{U_{i}\right\}_{i=1}^{n}$ in \mathbb{R}^{d}. If there exists a U_{α} that can only be expressed in \mathbb{R}^{d-2} or below and is the intersection of exactly two sets in U, then C is open convex.

Open Convex

Lemma 4.4 (G. and Macdonald)

Let C be a neural code on n neurons with a closed convex cover $U=\left\{U_{i}\right\}_{i=1}^{n}$ in \mathbb{R}^{d}. If there exists a U_{α} that can only be expressed in \mathbb{R}^{d-2} or below and is the intersection of exactly two sets in U, then C is open convex.

Possible Future Research

Conjecture

If C is a 3-sparse, locally good neural code on n neurons that is closed convex, then C is also open convex.

Possible Future Research

Conjecture

If C is a 3 -sparse, locally good neural code on n neurons that is closed convex, then C is also open convex.

Next Up

Find and define other criteria for open convexity that does not depend on closed convexity.

Thank You!

Thank you for listening!
Special thanks to Dr. Anne Shiu, Nida Obatake, Thomas Yahl, and the National Science Foundation.

References

- Carina Curto, Elizabeth Gross, Jack Jeffries, Katherine Morrison, Mohamed Omar, Zvi Rosen, Anne Shiu, and Nora Youngs. What makes a neural code convex? SIAM Journal on Applied Algebra and Geometry, 1(1):222238, 2017.
- Chad Giusti and Vladimir Itskov. A no-go theorem for one-layer feedforward networks. Neural computation, 26(11):25272540, 2014.
- Sarah Ayman Goldrup and Kaitlyn Phillipson. Classification of open and closed convex codes on five neurons, 2014.

