An average of generalized Dedekind sums

Travis Dillon¹ & Stephanie Gaston² 23 July 2019

¹Lawrence University ²California State University Dominguez Hills Classical Dedekind Sum

Generalized Dedekind Sum

A Different View

Bounds on the Second Moment

Lower Bound

Conclusion

Classical Dedekind Sum

$$B_1(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Z} \\ x - \lfloor x \rfloor - \frac{1}{2} & \text{otherwise.} \end{cases}$$

$$B_1(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Z} \\ x - \lfloor x \rfloor - \frac{1}{2} & \text{otherwise.} \end{cases}$$

$$s(a,c) = \sum_{j \bmod c} B_1\left(\frac{j}{c}\right) B_1\left(\frac{aj}{c}\right)$$

$$B_1(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Z} \\ x - \lfloor x \rfloor - \frac{1}{2} & \text{otherwise.} \end{cases}$$

$$S(a,c) = \sum_{j \mod c} B_1\left(\frac{j}{c}\right) B_1\left(\frac{aj}{c}\right)$$

... one of its many guises:

$$s(a,c) = \frac{1}{4c} \sum_{j \bmod c}' \cot\left(\frac{\pi j}{c}\right) \cot\left(\frac{\pi a j}{c}\right)$$

A **Dirichlet character** modulo q is a function $\chi \colon \mathbb{Z} \to \mathbb{C}$ that has

- 1. period q
- 2. $\chi(mn) = \chi(m)\chi(n)$
- 3. $\chi(n) = 0$ if and only if gcd(n,q) > 1
- 4. $\chi(1) = 1$

A **Dirichlet character** modulo q is a function $\chi \colon \mathbb{Z} \to \mathbb{C}$ that has

- 1. period q
- 2. $\chi(mn) = \chi(m)\chi(n)$
- 3. $\chi(n) = 0$ if and only if gcd(n,q) > 1

4.
$$\chi(1) = 1$$

The function

$$\chi_{0,m}(n) = \begin{cases} 1 & \text{if } \gcd(n,m) = 1 \\ 0 & \text{otherwise.} \end{cases}$$

is the **principal character** modulo *m*.

The function

$$\chi_{0,m}(n) = \begin{cases} 1 & \text{if } \gcd(n,m) = 1 \\ 0 & \text{otherwise.} \end{cases}$$

is the **principal character** modulo *m*.

Given ψ modulo q, we can **induce** a character modulo mq by $\psi\chi_{0,m}$.

The function

$$\chi_{0,m}(n) = \begin{cases} 1 & \text{if } \gcd(n,m) = 1 \\ 0 & \text{otherwise.} \end{cases}$$

is the **principal character** modulo *m*.

Given ψ modulo q, we can **induce** a character modulo mq by $\psi\chi_{0,m}$.

The function

$$\chi_{0,m}(n) = \begin{cases} 1 & \text{if } \gcd(n,m) = 1 \\ 0 & \text{otherwise.} \end{cases}$$

is the **principal character** modulo *m*.

Given ψ modulo q, we can **induce** a character modulo mq by $\psi\chi_{0,m}$.

A primitive character is not induced by any other character.

Dillon & Gaston

n												
$\psi(n)$	0	1	0	0	0	-1	0	1	0	0	0	—1

n	0	1	2	3	4	5	6	7	8	9	10	11
$\psi(n)$	0	1	0	0	0	-1	0	1	0	0	0	-1

The **Dirichlet** *L***-function** associated with the character χ is

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

The **Dirichlet** *L***-function** associated with the character χ is

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

Dirichlet used $L(1, \chi)$ to study primes in arithmetic progressions

Walum's Result

Walum evaluated

$$\sum_{\substack{\chi \bmod p \\ \chi(-1)=-1}} |L(1,\chi)|^2.$$

In principle, his technique works for all even powers.

Walum evaluated

$$\sum_{\substack{\chi \bmod p \\ \chi(-1)=-1}} |L(1,\chi)|^2.$$

In principle, his technique works for all even powers.

Theorem (Walum, 1982)

$$\sum_{\substack{\chi \mod p \\ \chi(-1) = -1}} |L(1,\chi)|^4 = \frac{\pi^4(p-1)}{p^2} \sum_{a \mod p} |s(a,c)|^2.$$

Walum evaluated

$$\sum_{\substack{\chi \mod p \\ (-1) = -1}} |L(1,\chi)|^2.$$

In principle, his technique works for all even powers.

 χ

Theorem (Walum, 1982)

$$\sum_{\substack{\chi \mod p \\ \chi(-1) = -1}} |L(1,\chi)|^4 = \frac{\pi^4(p-1)}{p^2} \sum_{a \mod p} |s(a,c)|^2$$

Rearranging, we have an average of Dedekind sums:

$$\sum_{a \mod p} |s(a,p)|^2 = \frac{p^2}{\pi^4(p-1)} \sum_{\substack{\chi \mod p \\ \chi(-1) = -1}} |L(1,\chi)|^4.$$

Generalized Dedekind Sum

Let $\chi_1 \mod q_1$ and $\chi_2 \mod q_2$ be non-trivial primitive Dirichlet characters. The **generalized Dedekind sum** is

$$S_{\chi_1,\chi_2}(a,c) = \sum_{j \bmod c} \sum_{n \bmod q_1} \overline{\chi_2}(j) \overline{\chi_1}(n) B_1\left(\frac{j}{c}\right) B_1\left(\frac{n}{q_1} + \frac{aj}{c}\right)$$

Let $\chi_1 \mod q_1$ and $\chi_2 \mod q_2$ be non-trivial primitive Dirichlet characters. The **generalized Dedekind sum** is

$$S_{\chi_1,\chi_2}(a,c) = \sum_{j \bmod c} \sum_{n \bmod q_1} \overline{\chi_2}(j)\overline{\chi_1}(n) B_1\left(\frac{j}{c}\right) B_1\left(\frac{n}{q_1} + \frac{aj}{c}\right)$$

... one of its many guises:

$$S_{\chi_1,\chi_2}(a,c) = K \sum_{\text{s mod } c}' \sum_{\text{r mod } q_2}' \chi_1(s) \chi_2(r) \cot\left(\pi \left(\frac{r}{q_2} - \frac{as}{c}\right)\right) \cot\left(\frac{\pi s}{c}\right)$$

Theorem (D. and G., 2019)

Let χ_1 and χ_2 be nontrivial primitive characters such that $\chi_1\chi_2(-1) = 1$, and let $q_1q_2 \mid c$. Then

$$\sum_{\substack{a \text{ mod } c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \text{ mod } c \\ \psi\chi_1(-1)=-1}} |L(1,\overline{\psi}^*\chi_1)|^2 |L(1,(\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi;c)|^2.$$

Theorem (D. and G., 2019)

Let χ_1 and χ_2 be nontrivial primitive characters such that $\chi_1\chi_2(-1) = 1$, and let $q_1q_2 \mid c$. Then

$$\sum_{\substack{a \text{ mod } c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \text{ mod } c \\ \psi\chi_1(-1)=-1}} |L(1,\overline{\psi}^*\chi_1)|^2 |L(1,(\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi;c)|^2.$$

$$g_{\chi_1,\chi_2}(\psi;c) = K(\psi) \sum_{\substack{d|c\\d\equiv 0 \text{ mod } q(\psi)}} \frac{\overline{\chi_2(c/d)}}{\varphi(d)} ((\overline{\psi\chi_2})^*\mu * 1)(d) (\chi_1 * \mu\psi^*) \left(\frac{d}{q(\psi)}\right)$$

Theorem (D. and G., 2019)

Let χ_1 and χ_2 be nontrivial primitive characters modulo q_1 and q_2 , respectively, such that $\chi_1\chi_2(-1) = 1$, and let $q_1q_2 | c$. For every $\varepsilon > 0$, there exist positive A_{ε} and B_{ε} such that

$$A_{\varepsilon}c^{2-\varepsilon} \leq \sum_{\substack{a \bmod c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 \leq B_{\varepsilon}c^{2+\varepsilon}.$$

Corollary

For all c > 0, $S_{\chi_1,\chi_2}(a, c)$ does **not** vanish.

A Different View

The special linear group $SL_2(\mathbb{Z})$ is the set of 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that ad - bc = 1.

The special linear group $SL_2(\mathbb{Z})$ is the set of 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that ad - bc = 1.

Definition

For $N \in \mathbb{N}^+$, the subgroup of $SL_2(\mathbb{Z})$ such that N divides c is denoted $\Gamma_0(\mathbb{N})$.

The special linear group $SL_2(\mathbb{Z})$ is the set of 2 × 2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that ad - bc = 1.

Definition

For $N \in \mathbb{N}^+$, the subgroup of $SL_2(\mathbb{Z})$ such that N divides c is denoted $\Gamma_0(\mathbb{N})$.

The Dedekind sum is a map from $\Gamma_0(q_1q_2)$ to \mathbb{C} by

$$\mathsf{S}_{\chi_1,\chi_2}(\gamma)=\mathsf{S}_{\chi_1,\chi_2}(a,c).$$

Let $\chi(\gamma) = \chi(d)$. Then $S_{\chi_1,\chi_2}(\gamma_1\gamma_2) = S_{\chi_1,\chi_2}(\gamma_1) + \chi_1\overline{\chi_2}(\gamma_1)S_{\chi_1,\chi_2}(\gamma_2).$ If $\chi_1 = \chi_2$, then $\chi_1\overline{\chi_2}(\gamma_1) = 1$, so $S_{\chi_1,\chi_2}(\gamma)$ is a homomorphism. Let $\chi(\gamma) = \chi(d)$. Then

$$\mathsf{S}_{\chi_1,\chi_2}(\gamma_1\gamma_2) = \mathsf{S}_{\chi_1,\chi_2}(\gamma_1) + \chi_1\overline{\chi_2}(\gamma_1)\mathsf{S}_{\chi_1,\chi_2}(\gamma_2).$$

If $\chi_1 = \chi_2$, then $\chi_1 \overline{\chi_2}(\gamma_1) = 1$, so $S_{\chi_1,\chi_2}(\gamma)$ is a homomorphism.

Corollary

The crossed homomorphism S_{χ_1,χ_2} is nontrivial. In fact, for each c > 0, there exists some $a \in \mathbb{Z}$ so that $S_{\chi_1,\chi_2}(a,c) \neq 0$.

Questions?

Bounds on the Second Moment

Recall that:

$$A_{\varepsilon}c^{2-\varepsilon} \leq \sum_{\substack{a \bmod c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 \leq B_{\varepsilon}c^{2+\varepsilon}$$

$$\sum_{\substack{a \bmod c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \bmod c \\ \psi\chi_1(-1)=-1}} |L(1,\overline{\psi}^*\chi_1)|^2 |L(1,(\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi;c)|^2$$

$$\sum_{\substack{a \bmod c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \bmod c \\ \psi\chi_1(-1)=-1}} |L(1,\overline{\psi}^*\chi_1)|^2 |L(1,(\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi;c)|^2$$

• For χ modulo q, there exists K > 0 so that $|L(1, \chi)| \le K \log q$

$$\sum_{\substack{a \bmod c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \bmod c \\ \psi\chi_1(-1)=-1}} |L(1,\overline{\psi}^*\chi_1)|^2 |L(1,(\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi;c)|^2$$

- For χ modulo q, there exists K > 0 so that |L(1, χ)| ≤ K log q
 Bound q:
 - Use the triangle inequality

$$\sum_{\substack{a \bmod c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \bmod c \\ \psi\chi_1(-1)=-1}} |L(1,\overline{\psi}^*\chi_1)|^2 |L(1,(\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi;c)|^2$$

• For χ modulo q, there exists K > 0 so that $|L(1, \chi)| \le K \log q$

Bound g:

- Use the triangle inequality
- Terms inside sum become 1

$$\sum_{\substack{a \bmod c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \bmod c \\ \psi\chi_1(-1)=-1}} |L(1,\overline{\psi}^*\chi_1)|^2 |L(1,(\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi;c)|^2$$

• For χ modulo q, there exists K > 0 so that $|L(1, \chi)| \le K \log q$

Bound g:

- Use the triangle inequality
- Terms inside sum become 1
- Bound by divisor function

Definition

d(n) is the number of positive divisors of n.

Example: The divisors of 12 are $\{1, 2, 3, 4, 6, 12\}$, so d(12) = 6.

Definition

d(n) is the number of positive divisors of n.

Example: The divisors of 12 are $\{1, 2, 3, 4, 6, 12\}$, so d(12) = 6.

Claim

For all $\varepsilon > 0$ there exists $K_{\varepsilon} > 0$ such that $d(n) \leq K_{\varepsilon} n^{\varepsilon}$.

Definition

d(n) is the number of positive divisors of n.

Example: The divisors of 12 are $\{1, 2, 3, 4, 6, 12\}$, so d(12) = 6.

Claim

For all $\varepsilon > 0$ there exists $K_{\varepsilon} > 0$ such that $d(n) \leq K_{\varepsilon} n^{\varepsilon}$.

Property

If gcd(m, n) = 1, then d(mn) = d(m)d(n).

So look at $d(p^k)$ for primes p.

Want to show that $d(p^k) \leq K_{\varepsilon} p^{k_{\varepsilon}}$, so consider

 $\frac{d(p^k)}{p^{k\varepsilon}}.$

Want to show that $d(p^k) \leq K_{\varepsilon} p^{k_{\varepsilon}}$, so consider

 $\frac{d(p^k)}{p^{k\varepsilon}}.$

Calculate: $d(p^k) = k + 1$.

$$\frac{k+1}{(p^{\varepsilon})^k}$$

Want to show that $d(p^k) \leq K_{\varepsilon} p^{k_{\varepsilon}}$, so consider

 $\frac{d(p^k)}{p^{k\varepsilon}}.$

Calculate:
$$d(p^k) = k + 1$$
.

$$\frac{k+1}{(p^{\varepsilon})^k} \le K_{\varepsilon}$$

Therefore $d(n) \leq K_{\varepsilon} n^{\varepsilon}$.

Sketchy Outline: Lower bound

 $\sum |S_{\chi_1,\chi_2}(a,c)|^2 \ge A_{\varepsilon}c^{2-\varepsilon}$ $a \mod c$ (a,c)=1

$$\sum_{\substack{a \bmod c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \bmod c \\ \psi\chi_1(-1)=-1}} |L(1,\overline{\psi}^*\chi_1)|^2 |L(1,(\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi;c)|^2$$

• For χ modulo q, there exists $K_{\varepsilon} > 0$ so that $|L(1, \chi)| \ge K_{\varepsilon}q^{-\varepsilon}$

$$\sum_{\substack{a \bmod c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \bmod c \\ \psi\chi_1(-1)=-1}} |L(1,\overline{\psi}^*\chi_1)|^2 |L(1,(\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi;c)|^2$$

• For χ modulo q, there exists $K_{\varepsilon} > 0$ so that $|L(1, \chi)| \ge K_{\varepsilon}q^{-\varepsilon}$

Bound g:

• Restrict the sum

$$\sum_{\substack{a \text{ mod } c\\(a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \text{ mod } c\\\psi\chi_1(-1)=-1}} |L(1,\overline{\psi}^*\chi_1)|^2 |L(1,(\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi;c)|^2$$

• For χ modulo q, there exists $K_{\varepsilon} > 0$ so that $|L(1, \chi)| \ge K_{\varepsilon}q^{-\varepsilon}$

Bound g:

- Restrict the sum
- All the terms are 1!

$$\sum_{\substack{a \bmod c \\ (a,c)=1}} |S_{\chi_1,\chi_2}(a,c)|^2 = \frac{\varphi(c)}{\pi^4} \sum_{\substack{\psi \bmod c \\ \psi\chi_1(-1)=-1}} |L(1,\overline{\psi}^*\chi_1)|^2 |L(1,(\psi\chi_2)^*)|^2 |g_{\chi_1,\chi_2}(\psi;c)|^2$$

• For χ modulo q, there exists $K_{\varepsilon} > 0$ so that $|L(1, \chi)| \ge K_{\varepsilon}q^{-\varepsilon}$

Bound g:

- Restrict the sum
- All the terms are 1!
- Clever counting

Question

How many primitive characters modulo q are there?

Recall that a primitive character is **not** induced by a character of lower modulus.

Let $\varphi^*(q)$ be the number of primitive characters modulo q.

Look at characters modulo *p*^{*n*}.

Idea: count the opposite.

Look at characters modulo p^n .

Idea: count the opposite.

A character is **not** primitive if it is induced by a character modulo p^{n-1} .

So we just need to find the number of characters modulo p^{n-1} .

A Dirichlet Digression

Definition

Let $n \in \mathbb{N}^+$. The set

$$(\mathbb{Z}/n\mathbb{Z})^* := \{a \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1\}$$

is a group under multiplication.

A Dirichlet Digression

Definition

Let $n \in \mathbb{N}^+$. The set

$$(\mathbb{Z}/n\mathbb{Z})^* := \{a \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1\}$$

is a group under multiplication.

We can also define a Dirichlet character $\chi \mod q$ as a homomorphism $(\mathbb{Z}/q\mathbb{Z})^* \to \mathbb{C}^*$. (This means that $\chi(1) = 1$ and $\chi(mn) = \chi(m)\chi(n)$.)

A Dirichlet Digression

Definition

Let $n \in \mathbb{N}^+$. The set

$$(\mathbb{Z}/n\mathbb{Z})^* := \{a \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1\}$$

is a group under multiplication.

We can also define a Dirichlet character $\chi \mod q$ as a homomorphism $(\mathbb{Z}/q\mathbb{Z})^* \to \mathbb{C}^*$. (This means that $\chi(1) = 1$ and $\chi(mn) = \chi(m)\chi(n)$.)

Then extend χ to $\mathbb Z$ by setting

$$\chi(n) = \begin{cases} \chi(n \mod q) & \text{if } \gcd(n,q) = 1\\ 0 & \text{otherwise.} \end{cases}$$

Fact

The number of characters modulo q is equal to the number of elements of $(\mathbb{Z}/q\mathbb{Z})^*$.

Definition

The number of positive integers less than q that are relatively prime to q is denoted $\varphi(q)$.

So there are $\varphi(p^{n-1})$ characters modulo p^{n-1} .

Modulo p^n , there are

- 1. $\varphi(p^n)$ characters
- 2. $\varphi(p^{n-1})$ imprimitive characters
- 3. $\varphi(p^n) \varphi(p^{n-1})$ primitive characters.

Modulo p^n , there are

- 1. $\varphi(p^n)$ characters
- 2. $\varphi(p^{n-1})$ imprimitive characters
- 3. $\varphi(p^n) \varphi(p^{n-1})$ primitive characters.

Claim: $\varphi(p^n) = p^n - p^{n-1}$.

Modulo p^n , there are

- 1. $\varphi(p^n)$ characters
- 2. $\varphi(p^{n-1})$ imprimitive characters
- 3. $\varphi(p^n) \varphi(p^{n-1})$ primitive characters.

Claim: $\varphi(p^n) = p^n - p^{n-1}$.

Proposition

$$\varphi^{\star}(p^n) = p^n - 2p^{n-1} + p^{n-2}.$$

Conclusion

Conclusion, being the Place in which we Recapitulate the High Points previously stated to you Fine Folk, and including a Small Sampling of the Exceedingly Excellent Problems related thereto

- + S_{χ_1,χ_2} is a generalization of Dedekind sum
- $S_{\chi_1,\chi_2} \colon \Gamma_0(q_1q_2) \to \mathbb{C}$
- Exact formula and bounds for second moment
- Proved that S_{χ_1,χ_2} is always a nontrivial map into \mathbb{C} .

Future work

Find formula for or asymptotics of higher moments

Thank You!

Special thanks to Dr. Matthew Young,

Texas A&M University, and the NSF.

Dillon & Gaston An average of generalized Dedekind sums

References

- Hugh Montgomery and Robert Vaughan. *Multiplicative Number Theory I. Classical theory.* Vol. 97. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2007.
- Hans Rademacher and Emil Grosswald. *Dedekind Sums*. Carus Mathematical Monographs 16. MAA, 1972.
- Tristie Stucker, Amy Vennos, and Matthew Young. "Dedekind sums arising from newform Eisenstein series". In: *arXiv preprint:1907.01524* (2019).
- Herbert Walum. "An exact formula for an average of *L*-series". In: Illinois Journal of Mathematics 26.1 (1982), pp. 1–3.