An average of generalized Dedekind sums

Travis Dillon ${ }^{1}$ \& Stephanie Gaston²
23 July 2019
${ }^{1}$ Lawrence University
${ }^{2}$ California State University Dominguez Hills

Classical Dedekind Sum

Generalized Dedekind Sum

A Different View

Bounds on the Second Moment
Upper Bound
Lower Bound

Conclusion

Classical Dedekind Sum

Definition

$$
B_{1}(x)= \begin{cases}0 & \text { if } x \in \mathbb{Z} \\ x-\lfloor x\rfloor-\frac{1}{2} & \text { otherwise }\end{cases}
$$

Definition

$$
B_{1}(x)= \begin{cases}0 & \text { if } x \in \mathbb{Z} \\ x-\lfloor x\rfloor-\frac{1}{2} & \text { otherwise }\end{cases}
$$

$$
s(a, c)=\sum_{j \bmod c} B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{a j}{c}\right)
$$

Definition

$$
B_{1}(x)= \begin{cases}0 & \text { if } x \in \mathbb{Z} \\ x-\lfloor x\rfloor-\frac{1}{2} & \text { otherwise } .\end{cases}
$$

$$
s(a, c)=\sum_{j \bmod c} B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{a j}{c}\right)
$$

... one of its many guises:

$$
s(a, c)=\frac{1}{4 c} \sum_{j \bmod c}^{\prime} \cot \left(\frac{\pi j}{c}\right) \cot \left(\frac{\pi a j}{c}\right)
$$

Dirichlet Characters

A Dirichlet character modulo q is a function $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ that has

1. period q
2. $\chi(m n)=\chi(m) \chi(n)$
3. $\chi(n)=0$ if and only if $\operatorname{gcd}(n, q)>1$
4. $\chi(1)=1$

Dirichlet Characters

A Dirichlet character modulo q is a function $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ that has

1. period q
2. $\chi(m n)=\chi(m) \chi(n)$
3. $\chi(n)=0$ if and only if $\operatorname{gcd}(n, q)>1$
4. $\chi(1)=1$

$$
\begin{array}{c|ccccc}
n & 0 & 1 & 2 & 3 & 4 \\
\hline \chi(n) & 0 & 1 & -i & i & -1
\end{array}
$$

Primitive Characters I

The function

$$
\chi_{0, m}(n)= \begin{cases}1 & \text { if } \operatorname{gcd}(n, m)=1 \\ 0 & \text { otherwise }\end{cases}
$$

is the principal character modulo m.

Primitive Characters I

The function

$$
\chi_{0, m}(n)= \begin{cases}1 & \text { if } \operatorname{gcd}(n, m)=1 \\ 0 & \text { otherwise }\end{cases}
$$

is the principal character modulo m.
Given ψ modulo q, we can induce a character modulo $m q$ by $\psi \chi_{0, m}$.

Primitive Characters I

The function

$$
\chi_{0, m}(n)= \begin{cases}1 & \text { if } \operatorname{gcd}(n, m)=1 \\ 0 & \text { otherwise } .\end{cases}
$$

is the principal character modulo m.
Given ψ modulo q, we can induce a character modulo $m q$ by $\psi \chi_{0, m}$.

$$
\begin{aligned}
& \begin{array}{c|ccccc}
n & 0 & 1 & 2 & 3 & 4 \\
\hline \psi(n) & 0 & 1 & i & -i & -1
\end{array} \\
& \begin{array}{c|cccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline \psi \chi_{0,2}(n) & 0 & 1 & 0 & -i & 0 & 0 & 0 & i & 0 & -1
\end{array}
\end{aligned}
$$

Primitive Characters I

The function

$$
\chi_{0, m}(n)= \begin{cases}1 & \text { if } \operatorname{gcd}(n, m)=1 \\ 0 & \text { otherwise }\end{cases}
$$

is the principal character modulo m.
Given ψ modulo q, we can induce a character modulo $m q$ by $\psi \chi_{0, m}$.

$$
\begin{array}{cc|cccccccc}
& n & 0 & 1 & 2 & 3 & 4 & & \\
\cline { 2 - 5 } & \psi(n) & 0 & 1 & i & -i & -1 & & & \\
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
9 & 9 \\
\hline \psi \chi_{0,2}(n) & 0 & 1 & 0 & -i & 0 & 0 & 0 & i & 0 \\
-1
\end{array}
$$

A primitive character is not induced by any other character.

Primitive Characters II

$$
\begin{array}{c|cccccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline \psi(n) & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & -1
\end{array}
$$

Primitive Characters II

$$
\begin{array}{c|cccccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline \psi(n) & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & -1
\end{array}
$$

Primitive Characters II

n	0	1	2	3	4	5	6	7	8	9	10	11
$\psi(n)$	0	1	0	0	0	-1	0	1	0	0	0	-1
$\psi^{\star}(n)$	0	1	-1	0	1	-1	0	1	-1	0	1	-1

$$
\begin{array}{c|ccc}
n & 0 & 1 & 2 \\
\hline \psi^{\star}(n) & 0 & 1 & -1
\end{array}
$$

The L-function

The Dirichlet L-function associated with the character χ is

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

The L-function

The Dirichlet L-function associated with the character χ is

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

Dirichlet used $L(1, \chi)$ to study primes in arithmetic progressions

Walum's Result

Walum evaluated

$$
\sum_{\substack{\chi \bmod p \\ \chi(-1)=-1}}|L(1, \chi)|^{2} .
$$

In principle, his technique works for all even powers.

Walum's Result

Walum evaluated

$$
\sum_{\substack{\chi \bmod p \\ \chi(-1)=-1}}|L(1, \chi)|^{2} .
$$

In principle, his technique works for all even powers.

Theorem (Walum, 1982)

$$
\sum_{\substack{\chi \bmod p \\ \chi(-1)=-1}}|L(1, \chi)|^{4}=\frac{\pi^{4}(p-1)}{p^{2}} \sum_{a \bmod p}|s(a, c)|^{2} .
$$

Walum's Result

Walum evaluated

$$
\sum_{\substack{\chi \bmod p \\ \chi(-1)=-1}}|L(1, \chi)|^{2} .
$$

In principle, his technique works for all even powers.

Theorem (Walum, 1982)

$$
\sum_{\substack{\chi \bmod p \\ \chi(-1)=-1}}|L(1, \chi)|^{4}=\frac{\pi^{4}(p-1)}{p^{2}} \sum_{a \bmod p}|s(a, c)|^{2}
$$

Rearranging, we have an average of Dedekind sums:

$$
\sum_{a \bmod p}|s(a, p)|^{2}=\frac{p^{2}}{\pi^{4}(p-1)} \sum_{\substack{\chi \bmod p \\ \chi(-1)=-1}}|L(1, \chi)|^{4}
$$

Generalized Dedekind Sum

Definition

Let $\chi_{1} \bmod q_{1}$ and $\chi_{2} \bmod q_{2}$ be non-trivial primitive Dirichlet characters. The generalized Dedekind sum is

$$
S_{\chi_{1}, \chi_{2}}(a, c)=\sum_{j \bmod c} \sum_{n \bmod q_{1}} \overline{\chi_{2}}(j) \overline{\chi_{1}}(n) B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{n}{q_{1}}+\frac{a j}{c}\right)
$$

Definition

Let $\chi_{1} \bmod q_{1}$ and $\chi_{2} \bmod q_{2}$ be non-trivial primitive Dirichlet characters. The generalized Dedekind sum is

$$
S_{\chi_{1}, \chi_{2}}(a, c)=\sum_{j \bmod c} \sum_{n \bmod q_{1}} \overline{\chi_{2}}(j) \overline{\chi_{1}}(n) B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{n}{q_{1}}+\frac{a j}{c}\right)
$$

... one of its many guises:

$$
S_{\chi_{1}, \chi_{2}}(a, c)=K \sum_{s \bmod c}^{\prime} \sum_{r \bmod q_{2}}^{\prime} \chi_{1}(s) \chi_{2}(r) \cot \left(\pi\left(\frac{r}{q_{2}}-\frac{a s}{c}\right)\right) \cot \left(\frac{\pi s}{c}\right)
$$

The Second Moment

Theorem (D. and G., 2019)

Let χ_{1} and χ_{2} be nontrivial primitive characters such that $\chi_{1} \chi_{2}(-1)=1$, and let $q_{1} q_{2} \mid c$. Then

$$
\sum_{\substack{a \bmod c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2}=\frac{\varphi(c)}{\pi^{4}} \sum_{\substack{\psi \bmod c \\ \psi \chi_{1}(-1)=-1}}\left|L\left(1, \bar{\psi}^{\star} \chi_{1}\right)\right|^{2}\left|L\left(1,\left(\psi \chi_{2}\right)^{\star}\right)\right|^{2}\left|g_{\chi_{1}, \chi_{2}}(\psi ; c)\right|^{2} .
$$

The Second Moment

Theorem (D. and G., 2019)

Let χ_{1} and χ_{2} be nontrivial primitive characters such that $\chi_{1} \chi_{2}(-1)=1$, and let $q_{1} q_{2} \mid c$. Then

$$
\sum_{\substack{a m o d c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2}=\frac{\varphi(c)}{\pi^{4}} \sum_{\substack{\psi \bmod c \\ \psi \chi_{1}(-1)=-1}}\left|L\left(1, \bar{\psi}^{\star} \chi_{1}\right)\right|^{2}\left|L\left(1,\left(\psi \chi_{2}\right)^{\star}\right)\right|^{2}\left|g_{\chi_{1}, \chi_{2}}(\psi ; c)\right|^{2}
$$

$$
g_{\chi_{1}, \chi_{2}}(\psi ; c)=K(\psi) \sum_{\substack{d \mid c \\ d \equiv 0 \bmod q(\psi)}} \frac{\overline{\chi_{2}}(c / d)}{\varphi(d)}\left(\left(\overline{\psi \chi_{2}}\right)^{\star} \mu * 1\right)(d)\left(\chi_{1} * \mu \psi^{\star}\right)\left(\frac{d}{q(\psi)}\right)
$$

Second Moment Bound

Theorem (D. and G., 2019)

Let χ_{1} and χ_{2} be nontrivial primitive characters modulo q_{1} and q_{2}, respectively, such that $\chi_{1} \chi_{2}(-1)=1$, and let $q_{1} q_{2} \mid c$. For every $\varepsilon>0$, there exist positive A_{ε} and B_{ε} such that

$$
A_{\varepsilon} c^{2-\varepsilon} \leq \sum_{\substack{a \neq o d \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2} \leq B_{\varepsilon} c^{2+\varepsilon} .
$$

Corollary

For all $c>0, S_{\chi_{1}, \chi_{2}}(a, c)$ does not vanish.

A Different View

Definition

The special linear group $\mathrm{SL}_{2}(\mathbb{Z})$ is the set of 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $a d-b c=1$.

Definition

The special linear group $\mathrm{SL}_{2}(\mathbb{Z})$ is the set of 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $a d-b c=1$.

Definition

For $N \in \mathbb{N}^{+}$, the subgroup of $S L_{2}(\mathbb{Z})$ such that N divides c is denoted $\Gamma_{0}(N)$.

Definition

The special linear group $\mathrm{SL}_{2}(\mathbb{Z})$ is the set of 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $a d-b c=1$.

Definition

For $N \in \mathbb{N}^{+}$, the subgroup of $S L_{2}(\mathbb{Z})$ such that N divides c is denoted $\Gamma_{0}(N)$.

The Dedekind sum is a map from $\Gamma_{0}\left(q_{1} q_{2}\right)$ to \mathbb{C} by

$$
S_{\chi_{1}, \chi_{2}}(\gamma)=S_{\chi_{1}, \chi_{2}}(a, c) .
$$

A Map with Structure

Let $\chi(\gamma)=\chi(d)$. Then

$$
S_{\chi_{1}, \chi_{2}}\left(\gamma_{1} \gamma_{2}\right)=S_{\chi_{1}, \chi_{2}}\left(\gamma_{1}\right)+\chi_{1} \overline{\chi_{2}}\left(\gamma_{1}\right) S_{\chi_{1}, \chi_{2}}\left(\gamma_{2}\right)
$$

If $\chi_{1}=\chi_{2}$, then $\chi_{1} \overline{\chi_{2}}\left(\gamma_{1}\right)=1$, so $S_{\chi_{1}, \chi_{2}}(\gamma)$ is a homomorphism.

A Map with Structure

Let $\chi(\gamma)=\chi(d)$. Then

$$
S_{\chi_{1}, \chi_{2}}\left(\gamma_{1} \gamma_{2}\right)=S_{\chi_{1}, \chi_{2}}\left(\gamma_{1}\right)+\chi_{1} \overline{\chi_{2}}\left(\gamma_{1}\right) S_{\chi_{1}, \chi_{2}}\left(\gamma_{2}\right)
$$

If $\chi_{1}=\chi_{2}$, then $\chi_{1} \overline{\chi_{2}}\left(\gamma_{1}\right)=1$, so $S_{\chi_{1}, \chi_{2}}(\gamma)$ is a homomorphism.

Corollary

The crossed homomorphism $S_{\chi_{1}, \chi_{2}}$ is nontrivial. In fact, for each $c>0$, there exists some $a \in \mathbb{Z}$ so that $S_{\chi_{1}, \chi_{2}}(a, c) \neq 0$.

Questions?

Bounds on the Second Moment

Overview

Recall that:

$$
A_{\varepsilon} c^{2-\varepsilon} \leq \sum_{\substack{a \text { mod } c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2} \leq B_{\varepsilon} c^{2+\varepsilon}
$$

Sketchy Outline: Upper bound

$$
\sum_{\substack{a \bmod c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2}=\frac{\varphi(c)}{\pi^{4}} \sum_{\substack{\psi \bmod c \\ \psi \chi_{1}(-1)=-1}}\left|L\left(1, \bar{\psi}^{\star} \chi_{1}\right)\right|^{2}\left|L\left(1,\left(\psi \chi_{2}\right)^{\star}\right)\right|^{2}\left|g_{\chi_{1}, \chi_{2}}(\psi ; c)\right|^{2}
$$

Sketchy Outline: Upper bound

$$
\sum_{\substack{a \text { mod } c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2}=\frac{\varphi(c)}{\pi^{4}} \sum_{\substack{\psi \bmod c \\ \psi \chi_{1}(-1)=-1}}\left|L\left(1, \bar{\psi}^{\star} \chi_{1}\right)\right|^{2}\left|L\left(1,\left(\psi \chi_{2}\right)^{\star}\right)\right|^{2}\left|g_{\chi_{1}, \chi_{2}}(\psi ; c)\right|^{2}
$$

Bound the L-functions:

- For χ modulo q, there exists $K>0$ so that $|L(1, \chi)| \leq K \log q$

Sketchy Outline: Upper bound

$$
\sum_{\substack{a \bmod c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2}=\frac{\varphi(c)}{\pi^{4}} \sum_{\substack{\psi \bmod c \\ \psi \chi_{1}(-1)=-1}}\left|L\left(1, \bar{\psi}^{\star} \chi_{1}\right)\right|^{2}\left|L\left(1,\left(\psi \chi_{2}\right)^{\star}\right)\right|^{2}\left|g_{\chi_{1}, \chi_{2}}(\psi ; c)\right|^{2}
$$

Bound the L-functions:

- For χ modulo q, there exists $K>0$ so that $|L(1, \chi)| \leq K \log q$ Bound g :
- Use the triangle inequality

Sketchy Outline: Upper bound

$$
\sum_{\substack{a \bmod c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2}=\frac{\varphi(c)}{\pi^{4}} \sum_{\substack{\psi \bmod c \\ \psi \chi_{1}(-1)=-1}}\left|L\left(1, \bar{\psi}^{\star} \chi_{1}\right)\right|^{2}\left|L\left(1,\left(\psi \chi_{2}\right)^{\star}\right)\right|^{2}\left|g_{\chi_{1}, \chi_{2}}(\psi ; c)\right|^{2}
$$

Bound the L-functions:

- For χ modulo q, there exists $K>0$ so that $|L(1, \chi)| \leq K \log q$ Bound g :
- Use the triangle inequality
- Terms inside sum become 1

Sketchy Outline: Upper bound

$$
\sum_{\substack{a \bmod c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2}=\frac{\varphi(c)}{\pi^{4}} \sum_{\substack{\psi \bmod c \\ \psi \chi_{1}(-1)=-1}}\left|L\left(1, \bar{\psi}^{\star} \chi_{1}\right)\right|^{2}\left|L\left(1,\left(\psi \chi_{2}\right)^{\star}\right)\right|^{2}\left|g_{\chi_{1}, \chi_{2}}(\psi ; c)\right|^{2}
$$

Bound the L-functions:

- For χ modulo q, there exists $K>0$ so that $|L(1, \chi)| \leq K \log q$ Bound g :
- Use the triangle inequality
- Terms inside sum become 1
- Bound by divisor function

Divisor Function

Definition

$d(n)$ is the number of positive divisors of n.
Example: The divisors of 12 are $\{1,2,3,4,6,12\}$, so $d(12)=6$.

Divisor Function

Definition

$d(n)$ is the number of positive divisors of n.
Example: The divisors of 12 are $\{1,2,3,4,6,12\}$, so $d(12)=6$.
Claim
For all $\varepsilon>0$ there exists $K_{\varepsilon}>0$ such that $d(n) \leq K_{\varepsilon} n^{\varepsilon}$.

Divisor Function

Definition

$d(n)$ is the number of positive divisors of n.
Example: The divisors of 12 are $\{1,2,3,4,6,12\}$, so $d(12)=6$.

Claim

For all $\varepsilon>0$ there exists $K_{\varepsilon}>0$ such that $d(n) \leq K_{\varepsilon} n^{\varepsilon}$.

Property
 If $\operatorname{gcd}(m, n)=1$, then $d(m n)=d(m) d(n)$.

So look at $d\left(p^{k}\right)$ for primes p.

Divisor Bound

Want to show that $d\left(p^{k}\right) \leq K_{\varepsilon} p^{k \varepsilon}$, so consider

$$
\frac{d\left(p^{k}\right)}{p^{k \varepsilon}} .
$$

Divisor Bound

Want to show that $d\left(p^{k}\right) \leq K_{\varepsilon} p^{k \varepsilon}$, so consider

$$
\frac{d\left(p^{k}\right)}{p^{k \varepsilon}}
$$

Calculate: $d\left(p^{k}\right)=k+1$.

$$
\frac{k+1}{\left(p^{\varepsilon}\right)^{k}}
$$

Divisor Bound

Want to show that $d\left(p^{k}\right) \leq K_{\varepsilon} p^{k \varepsilon}$, so consider

$$
\frac{d\left(p^{k}\right)}{p^{k \varepsilon}}
$$

Calculate: $d\left(p^{k}\right)=k+1$.

$$
\frac{k+1}{\left(p^{\varepsilon}\right)^{k}} \leq K_{\varepsilon}
$$

Therefore $d(n) \leq K_{\varepsilon} n^{\varepsilon}$.

Sketchy Outline: Lower bound

$$
\sum_{\substack{a \bmod c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2} \geq A_{\varepsilon} c^{2-\varepsilon}
$$

Sketchy Outline: Lower bound

$$
\sum_{\substack{c \text { modo } c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}(}(a, c)\right|^{2}=\frac{\varphi(c)}{\pi^{4}} \sum_{\substack{\psi \text { mod } c \\ \psi \chi_{1}(-1)=-1}}\left|L\left(1, \bar{\psi}^{*} \chi_{1}\right)\right|^{2}\left|L\left(1,\left(\psi \chi_{2}\right)^{\star}\right)\right|^{2}\left|g_{\chi_{1}, \chi_{2}(}(\psi ; c)\right|^{2}
$$

Bound the L-functions:

- For χ modulo q, there exists $K_{\varepsilon}>0$ so that

$$
|L(1, \chi)| \geq K_{\varepsilon} q^{-\varepsilon}
$$

Sketchy Outline: Lower bound

$$
\sum_{\substack{a \bmod c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2}=\frac{\varphi(c)}{\pi^{4}} \sum_{\substack{\psi \bmod c \\ \psi \chi_{1}(-1)=-1}}\left|L\left(1, \bar{\psi}^{\star} \chi_{1}\right)\right|^{2}\left|L\left(1,\left(\psi \chi_{2}\right)^{\star}\right)\right|^{2}\left|g_{\chi_{1}, \chi_{2}}(\psi ; c)\right|^{2}
$$

Bound the L-functions:

- For χ modulo q, there exists $K_{\varepsilon}>0$ so that

$$
|L(1, \chi)| \geq K_{\varepsilon} q^{-\varepsilon}
$$

Bound g :

- Restrict the sum

Sketchy Outline: Lower bound

$$
\sum_{\substack{a \bmod c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2}=\frac{\varphi(c)}{\pi^{4}} \sum_{\substack{\psi \bmod c \\ \psi \chi_{1}(-1)=-1}}\left|L\left(1, \bar{\psi}^{\star} \chi_{1}\right)\right|^{2}\left|L\left(1,\left(\psi \chi_{2}\right)^{\star}\right)\right|^{2}\left|g_{\chi_{1}, \chi_{2}}(\psi ; c)\right|^{2}
$$

Bound the L-functions:

- For χ modulo q, there exists $K_{\varepsilon}>0$ so that

$$
|L(1, \chi)| \geq K_{\varepsilon} q^{-\varepsilon}
$$

Bound g :

- Restrict the sum
- All the terms are 1 !

Sketchy Outline: Lower bound

$$
\sum_{\substack{a \bmod c \\(a, c)=1}}\left|S_{\chi_{1}, \chi_{2}}(a, c)\right|^{2}=\frac{\varphi(c)}{\pi^{4}} \sum_{\substack{\psi \bmod c \\ \psi \chi_{1}(-1)=-1}}\left|L\left(1, \bar{\psi}^{\star} \chi_{1}\right)\right|^{2}\left|L\left(1,\left(\psi \chi_{2}\right)^{\star}\right)\right|^{2}\left|g_{\chi_{1}, \chi_{2}}(\psi ; c)\right|^{2}
$$

Bound the L-functions:

- For χ modulo q, there exists $K_{\varepsilon}>0$ so that

$$
|L(1, \chi)| \geq K_{\varepsilon} q^{-\varepsilon}
$$

Bound g :

- Restrict the sum
- All the terms are 1!
- Clever counting

A lemma that counts I

Question
 How many primitive characters modulo q are there?

Recall that a primitive character is not induced by a character of lower modulus.

Let $\varphi^{\star}(q)$ be the number of primitive characters modulo q.

Pick a prime . . .

Look at characters modulo p^{n}.
Idea: count the opposite.

Pick a prime . . .

Look at characters modulo p^{n}.
Idea: count the opposite.
A character is not primitive if it is induced by a character modulo p^{n-1}.

So we just need to find the number of characters modulo p^{n-1}.

A Dirichlet Digression

Definition

Let $n \in \mathbb{N}^{+}$. The set

$$
(\mathbb{Z} / n \mathbb{Z})^{*}:=\{a \in \mathbb{Z} / n \mathbb{Z}: \operatorname{gcd}(a, n)=1\}
$$

is a group under multiplication.

A Dirichlet Digression

Definition

Let $n \in \mathbb{N}^{+}$. The set

$$
(\mathbb{Z} / n \mathbb{Z})^{*}:=\{a \in \mathbb{Z} / n \mathbb{Z}: \operatorname{gcd}(a, n)=1\}
$$

is a group under multiplication.
We can also define a Dirichlet character $\chi \bmod q$ as a homomorphism $(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$. (This means that $\chi(1)=1$ and $\chi(m n)=\chi(m) \chi(n)$.

A Dirichlet Digression

Definition

Let $n \in \mathbb{N}^{+}$. The set

$$
(\mathbb{Z} / n \mathbb{Z})^{*}:=\{a \in \mathbb{Z} / n \mathbb{Z}: \operatorname{gcd}(a, n)=1\}
$$

is a group under multiplication.
We can also define a Dirichlet character $\chi \bmod q$ as a homomorphism $(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$. (This means that $\chi(1)=1$ and $\chi(m n)=\chi(m) \chi(n)$.)

Then extend χ to \mathbb{Z} by setting

$$
\chi(n)= \begin{cases}\chi(n \bmod q) & \text { if } \operatorname{gcd}(n, q)=1 \\ 0 & \text { otherwise }\end{cases}
$$

A Dirichlet Digression

Fact

The number of characters modulo q is equal to the number of elements of $(\mathbb{Z} / q \mathbb{Z})^{*}$.

Definition

The number of positive integers less than q that are relatively prime to q is denoted $\varphi(q)$.

So there are $\varphi\left(p^{n-1}\right)$ characters modulo p^{n-1}.

A lemma that counts II

Modulo p^{n}, there are

1. $\varphi\left(p^{n}\right)$ characters
2. $\varphi\left(p^{n-1}\right)$ imprimitive characters
3. $\varphi\left(p^{n}\right)-\varphi\left(p^{n-1}\right)$ primitive characters.

A lemma that counts II

Modulo p^{n}, there are

1. $\varphi\left(p^{n}\right)$ characters
2. $\varphi\left(p^{n-1}\right)$ imprimitive characters
3. $\varphi\left(p^{n}\right)-\varphi\left(p^{n-1}\right)$ primitive characters.

Claim: $\varphi\left(p^{n}\right)=p^{n}-p^{n-1}$.

A lemma that counts II

Modulo p^{n}, there are

1. $\varphi\left(p^{n}\right)$ characters
2. $\varphi\left(p^{n-1}\right)$ imprimitive characters
3. $\varphi\left(p^{n}\right)-\varphi\left(p^{n-1}\right)$ primitive characters.

Claim: $\varphi\left(p^{n}\right)=p^{n}-p^{n-1}$.

Proposition

$$
\varphi^{\star}\left(p^{n}\right)=p^{n}-2 p^{n-1}+p^{n-2}
$$

Conclusion

Conclusion, being the Place in which we Recapitulate the High Points previously stated to you Fine Folk, and including a Small Sampling of the Exceedingly Excellent Problems related thereto

- $S_{\chi_{1}, \chi_{2}}$ is a generalization of Dedekind sum
- $S_{\chi_{1}, \chi_{2}}: \Gamma_{0}\left(q_{1} q_{2}\right) \rightarrow \mathbb{C}$
- Exact formula and bounds for second moment
- Proved that $S_{\chi_{1}, \chi_{2}}$ is always a nontrivial map into \mathbb{C}.

Future work

Find formula for or asymptotics of higher moments

Thank You!

Special thanks to Dr. Matthew Young,

Texas A\&M University, and the NSF.

References

(Hugh Montgomery and Robert Vaughan. Multiplicative Number Theory I. Classical theory. Vol. 97. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2007.

EHans Rademacher and Emil Grosswald. Dedekind Sums. Carus Mathematical Monographs 16. MAA, 1972.
Tristie Stucker, Amy Vennos, and Matthew Young. "Dedekind sums arising from newform Eisenstein series". In: arXiv preprint:1907.01524 (2019).

Herbert Walum. "An exact formula for an average of L-series". In: Illinois Journal of Mathematics 26.1 (1982), pp. 1-3.

