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Abstract

In this work, we address linear compartment model identifiability, and prove several
cases where changing the model in preserves identifiability. We introduce a new family of
models, which includes the Fin, Wing, Nemo, and Tweety-Bird models, and prove that
each of these models is generically locally identifiable. We also prove that a conjecture
of Gross, Meshkat, and Shiu (2019) holds for cycle, catenary, and mammillary models.
Lastly, we examine a new kind of operation, moving the output, and show that it
preserves identifiability in cycle models. Our proofs are aided by results on elementary
symmetric polynomials and the theory of linear algebra for input-output equations of
linear compartment models.

1 Introduction
Linear compartment models have become a staple in certain biological fields, including phar-
macology, ecology, and cell biology. These models describe how something, whether it be
drug concentration or toxins, move within a system. In this work, we focus on the identifia-
bility of linear compartment models. Identifiability is the ability to recover flow parameters
from a limited data set. This property is valuable for many reasons. Theoretically, the goal
is to find simpler methods to identify parameters in a model. But, before the how, we must
answer can: that is, before answering how to identify the parameters, we must answer if we
can. The purpose of this work is answer when we can.

Previous research has investigated some operations which may or may not preserve iden-
tifiablity. That is, given a model that is identifiable, does changing the model in some
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way keep identifiability, or is the new model unidentifiable? Previous research investigated
adding inputs, outputs, edges, and leaks, as well as deleting inputs, outputs, and edges. One
of the open questions was leak deletion. Several of our results prove that, for certain models,
deleting the leak does preserve identifiability, thereby giving further evidence that deleting
a leak will always preserve identifiability.

Our first result analyzes elementary symmetric polynomials: they become essential in
proving the later results. The second result addresses leak deletion in cycle, catenary, and
mammillary models. We prove that deleting the leak preserves identifiability. Next, we prove
that moving the output in a cycle model preserves identifiability. Our final result presents
new models, the Fin, Wing, Nemo, and Tweety-Bird models, and prove they are identifiable.

This paper is structured as follows. The Section 2 examines previous results and sets
up the necessary definitions and tools we use throughout the rest of the paper. Section 3
presents our main results: some cases where leak deletion preserves identifiability, and that
moving the output in cycle models preserves identifiability. Finally, we present the new
models and prove they are generically locally identifiable. Section 4 discusses avenues for
further research as well as some notes which may help with future inquiry.

2 Background
We begin with some definitions and important preliminary results. We follow the definitions
and notations used in [1]. Specifically, we focus on linear models and identifiability.

2.1 Linear Compartment Models

A linear compartmental model is defined as a directed graph, call it G = (V,E), and three
sets, In, Out, Leak ⊆ V , which are the Input, Output, and Leak compartments, respectively.
A compartment is a vertex i ∈ V , and edges j → i represents the flow or transfer of material
from the jth compartment to the ith compartment. Every input compartment has an external
input, ui(t), which fuels the system. That is, the input compartment is the source of the
material. The output compartments, on the other, are measureable: we are able to know
the concentration in these compartments. A leak compartment k ∈ Leak is a compartment
where some rate of flow leaves the system. Input compartments are labeled with “in,” and
outputs are indicated by an edge with an empty circle at the end, also labeled with “out.”
Every edges has an associated parameter, indicated by kij, where i indicates the compartment
where the flow is going to, and j indicates where the flowing is coming from. Furthermore,
we attach a parameter to a leak, k0j, where 0 indicates that the flow is leaving the system and
j indicates which compartment the leak is located at. Figure 1 below represents a specific
model, called a cycle model (which is a model we study).
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Figure 1: A cycle model

In this case, In = Out = Leak = {1}. (In general, the input, output, and leaks can be in
any compartment.) We require that In 6= ∅ and Out 6= ∅, otherwise we would theoretically
be unable to collect variable data. However, Leak can be the empty set.

To drive some intuition, an example of something that Figure 1 could model would be a
drug injection. Compartment 1 would be the injection site, like an arm or thigh. The input
would be the shot, where the drug concentration is known. The output would be some kind
of measuring device which indicates how much drug is still in the injection site. The other
compartments could represent organs, where the drug is going from the injection site, to the
heart, to the lungs, to the kidneys, etc., and back to the injection site.

Now we develop some technical theory:

Definition 2.1. A directed graph is strongly connected if there exists a directed path from
each vertex to every other vertex. A linear compartment model (G, In,Out, Leak) is strongly
connected if G is strongly connected.

Essentially, Definition 2.1 is saying that in a strongly connected linear compartment
model, there exists a sequence of edges that goes from a given compartment to any other
compartment.

2.2 Input-Output Equations

For linear compartment models, input-output equations are equations which hold along any
solutions of the ODE’s, where only the parameters, the input variables ui, and the output
variables yj and their derivatives are known. The general formulation of these equations
was first presented by Meshkat, Sullivant, and Eisenberg [1]. Gross, Meshkat, and Shiu [2]
proved a slightly different version, which we present here:

Proposition 2.1. Let M=(G, In, Out, Leak) be a linear compartment model with n com-
partments and at least one input. Define ∂I to be the n× n matrix in which every diagonal
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entry is the differential operator d/dt and every off-diagonal entry is 0. Let A be the com-
partmental matrix, and let (∂I − A)ij denote the (n − 1) × (n − 1) matrix obtained from
(∂I − A) by removing row j and column i. Then, the following equations are input-output
equations for M. For i ∈ out :

det(∂I − A)yi =
∑
j∈In

(−1)i+j det ((∂I − A)ji)uj.

From the input-output equation, we are able to derive a coefficient map. This map takes
the parameters to the coefficients of the input-output equation. We denote a coefficient map
as follows:

c : R|E|+|Leak| 7→ Rk. (1)

Here, |E| represents the number of non-leak parameters, or kijs, i 6= 0, and |Leak| is the
number of leaks, or k0js, (essentially, |E| + |Leak| is the total number of parameters). As
for the image, k represents the number of coefficients in the input-output equation. These
coefficients are some polynomials of the parameters, (e.g. k21k43 + k01k13). A priori, there
is no way to know for sure how many coefficients there will be. In fact, this is a driving
question in our work.

2.3 Identifiability

Next we turn to key property of a model. A model is identifiable if the parameters, the kijs,
can be recovered from the data. That is, given two things, perfect input data and perfect
output data, we can derive the parameters. Going off the injection analogy from the last
section, the question is: if we know the amount of drug in the injection, and the amount of
drug still present in the injection site, can we figure out how much drug is being transferred
from one organ to another after some time. There are several kinds of identifiability, which
we now define. Our work primarily focuses on local identifiability.

Definition 2.2. LetM = (G, In,Out, Leak) be a linear compartment model. The coefficient
map is the function c : R|E|+|Leak| 7→ Rk that is the vector of all coefficient functions of the
input-output equation (where k is the total number of coefficients). Then M is:

1. globally identifiable if c is one-to-one, and is generically globally identifiable if c is
one-to-one outside a set of measure zero.

2. locally identifiable if around every point in R|E|+|Leak| there is an open neighborhood
U such that C : U 7→ Rk is one-to-one, and is generically locally identifiable if, outside
a set of measure zero, every point in R|E|+|Leak| has such an open neighborhood U .

3. unidentifiable if c is infinite-to-one.

Lastly, we give a key result which is the work-horse of our results.
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Proposition 2.2 (Meshkat, Sullivant, and Eisenberg (2015)). A linear compartment model
(G, In, Out, Leak) is generically locally identifiable if and only if the rank of the Jacobian
Matrix of its coefficient map c, when evaluated at a generic point, is equal to |E|+ |Leak|.

One important thing to note is that generically local identifiability does not guarantee
the model with be identifiable. There may be values of certain parameters which make the
model unidentifiable. For further reading on this issue, see [2].

3 Main Results
This section presents our main results. In Section 3.1, we discuss elementary symmetric
polynomials, as they become important in proving the later results. In Section 3.2 we
partially prove a conjecture from Gross, Harrington, Meshkat, and Shiu (2019) regarding
leaks. Then, in Section 3.3, we address new kind of operation: moving the output, where
we specifically focus on cycle models. Lastly, in Section 3.4, we introduce a new family of
models and show they are generically locally identifiable.

3.1 Elementary Symmetric Polynomials

Our first set of results addresses elementary symmetric polynomials, for they become key to
proving identifiability later on.

Lemma 3.1. Let ej be the jth elementary symmetric polynomial on a set of variables X =
{x1, ..., xn}, such that V := {e1, ..., en}. Then the Jacobian matrix of V with respect to
x1, ..., xn has full rank.

Proof. Let X = {x1, ..., xn} be a set of n variables. Furthermore, let {̂i} := [n] \ {i} and
{x̂i} := X \{xi} Then, the mth elementary symmetric polynomial on X can be rewritten as:

f em =
∑

j1<j2<···<jm

xj1 ...xjm =
∑

j2<...<jm

xi(xj2 ...xjm) +
∑

l1<...<lm

xl1 ...xlm

where js, lt ∈ {̂i}. Taking the partial derivative with respect to xi yields:

∂em
∂xi

=
∑

j2<...<jm

xj2 ...xjm =: em−1{x̂i}. (2)

The expression em−1{x̂i} represents the (m − 1)th polynomial taken over the set X \ {xi}.
The Jacobian matrix is as follows:

J(V ) =


1 1 . . . 1

e1{x̂1} e1{x̂2} e1{x̂n}
...

. . .

en−1{x̂1} . . . en−1{x̂n}

.
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It will now suffice to show that det(J(V )) 6= 0. We do so similarly as the proof of Theorem
5.1 in [2] by showing that det(J(V )) equals the Vandermonde polynomial on X. In other
words, we show the following equality, up to sign:

det(J(V )) = ±
∏

1≤i<j≤n

(xi − xj). (3)

Both sides have the same degree: the determinant has degree
∑n−1

i=1 i, since each row
increases degree by one, which is the degree of the Vandermonde polynomial. Lastly, we
need to show that (xi−xj) divides det(J(V )). To do so, let xi = xj. Then the Vandermonde
polynomial becomes zero. Since xi = xj, the ith and jth rows of J(V ) would coincide.
Thus, the columns would be linearly dependent, and det(J(W )) = 0. Therefore, (xi −
xj)| det(J(V )). So Equation (3) holds.

Now, since xi 6= xj, the Vadermonde polynomial is nonzero, and therefore det(J(v)) 6= 0.
Hence, the Jacobian matrix has full rank.

Corollary 3.1. Every square submatrix of Jac(V ) in Lemma 3.1, where V = {e1, ..., en}
has full rank.

Proof. Follows immediately from Lemma 3.1.

3.2 Removing the Leak

Our next set of results addresses a conjecture posed by Gross, Meshkat, and Shiu [3]. We
show that removing a leak in three specific models, defined in [2], preserves identifiability.

Conjecture 3.1 (Conjecture 4.5 (Gross, Meshkat, and Shiu (2017)). Let M̃ be a linear
compartment model that is strongly connected and has at least one input and exactly one
leak. If M̃ is generically locally identifiable from the coefficient map, then so is the model
M obtained from M̃ by removing the leak.

Theorem 3.1. Let M̃ be a catenary, cycle, or mammillary model that has exactly one input
in the first compartment and exactly one leak. Then M̃ is generically locally identifiable and
so is the model M obtained by removing the leak.

Proof. Proposition 4.7 from [3] states catenary, cycle, and mammillary models, with no leaks,
are locally identifiable from the coefficient map. Then, by Theorem 4.3 from [3], adding a
leak preserves identifiability. Thus, both M and M̃ are generically locally identifiable.

3.3 Moving the Output in a Cycle Model

Our next result is the first look at a new operation on linear compartment models: moving
the output. Incidentally, for cycle models, moving the output is the same as moving the
input. We assume that Input = {1}, but if 1 6∈ Input (assuming we we only have one
input), the model can be relabeled such that 1 ∈ Input (this property is special to the cycle
model with one input and one output). We show that a cycle model with one input, one
output, and one leak, is generically locally identifiable.
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Theorem 3.2. Assume n ≥ 3. Let M̃ be an n-compartment cycle model with exactly one
input, exactly one output, and exactly one leak. Then M̃ is generically locally identifiable
and so is the model obtained by removing the leak.

We prove Theorem 3.2 by first showing that moving the output preserves identifiability.

Theorem 3.3. For an n-compartment cycle model with no leaks, input in compartment 1
only, and output in compartment p only, such that p 6= 1 (that is, the output is not in the
same compartment as the input), the coefficients of the input-output equation are given by
the coefficient map:

c : Rn → Rn+p−2

where

(k21, ..., k1n) 7−→ (e1, ..., en−1,
n+1∏

i=p+1

ki,i−1e
∗
0, ...,

n+1∏
i=p+1

ki,i−1e
∗
p−2)

where ej is the jth elementary symmetric polynomial on the set E = {k21, ..., kn,n−1, k1n} and
e∗q is the qth elementary symmetric polynomial on the set E∗ = {k32, ..., kp,p−1}.

Proof. Let p be the output compartment. Then, 2 ≤ p ≤ n. In the indices, we let n+1 := 1.1
According to Proposition 2.1, the input-output equation is

det(∂I − A)yp = (−1)p+1 det(∂I − A)1pu1. (4)

Let A′ = (∂I − A). Then A′ is the following n× n matrix:

A′ =



d
dt
+ k21 0 . . . 0 −k1n
−k21 d

dt
+ k32 0 . . . 0

0
. . .

. . .
... −ki,i−1 d

dt
+ ki+1,i

...
. . .

. . .

0 . . . 0 −kn,n−1 d
dt
+ k1n


.

By Equation (4), the LHS of the input-output equation is simply the determinant of the
above matrix multiplied by yp. Notice that changing the output compartment does not alter
the matrix, and therefore the LHS is the same for all p. We compute the determinant by
expanding along the first row:

det(A′) =

(
d

dt
+ k21

)
det(A′1) + (−1)nk1n det(A′2) (5)

where A′1 is the submatrix (given below) obtained by deleting row 1 and column 1 of A′. A′2
1The purpose of this relation is to be able to go from (n, n− 1) to (1n) in the indices. We maintain this

notation throughout
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is the submatrix obtained by deleting row 1 and column n:

A′1 =


d
dt
+ k32 0 . . . 0

−k32 d
dt
+ k43

...
...

. . . 0
0 . . . −kn,n−1 d

dt
+ k1n

.
The A′1 matrix is a lower triangular matrix, therefore the determinant is the product of the
diagonal entries. Then,

det(A′1) =
n∏

i=2

(
d

dt
+ ki+1,i

)
. (6)

A′2 is the submatrix obtained by deleting row 1 and column n from A′.

A′2 =


−k21 d

dt
+ k32 0 . . . 0

0 −k32
...

...
. . .

−kn−1,n−2 d
dt
+ kn,n−1

0 . . . 0 −kn,n−1

.

The A′2 matrix is an upper triangular matrix, and thus the determinant is the product of
the diagonal entries as well:

det(A′2) =
n∏

i=2

ki,i−1. (7)

Substituting (6) and (7) into (5) yields:

det(A′) =

(
d

dt
+ k21

) n∏
i=2

(
d

dt
+ ki+1,i

)
− k1n

n∏
i=2

ki,i−1. (8)

Recalling that ej denotes the jth elementary symmetric polynomial on E, (8) simplifies to
the final form of the LHS:

dn

dt
e0 +

d

dt

n−1
e1 + · · ·+

d

dt
en−1. (9)

The left hand side coefficients for the coefficient map can easily be extracted: they are the
first to (n − 1)th elementary symmetric polynomials on E. This expression concludes the
work on the LHS. We now turn our attention to the RHS.

By Proposition 2.1, the RHS is found by removing the first column and pth row from
A′. Call A∗ the matrix generated by removing the first row and nth column as well. Then,
because the first row is (0, 0, ...,−k1n), we get that det(∂I − A1p) = −k1n det(A∗), where
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A∗ =



d
dt
+ k32 . . . 0

−k32
. . .

... −kp−1,p−2 d
dt
+ kp,p−1

...
0 0 −kp+1,p

d
dt
+ kp+2,p+1

. . . 0
0 . . . 0 kn,n−1


.

A∗ can be written as a block matrix:

A∗ =

[
B 0
0 C

]
where B is a lower triangular matrix with the diagonal composed of terms of the form
( d
dt
+ kij) and C is an upper triangular matrix with the diagonal composed of kijs. Then,

det(A∗) = det(B) det(C − 0B−10) = det(B) det(C). Therefore:

−k1n det(A∗) = −k1n
p−1∏
i=2

(
d

dt
+ ki+1,i)

n∏
i=p+1

ki,i−1 (10)

which can simplified to 2:

±
p−1∏
i=2

(
d

dt
+ ki+1,i)

n+1∏
i=p+1

ki,i−1. (11)

Similar to before, the product of the binomials is related to elementary symmetric poly-
nomials. Define E∗ = {k32, ..., kp,p−1}. Expansion of the binomial product then yields:

d

dt

p−2
e∗0 +

d

dt

p−3
e∗1 + ...+ e∗p−2. (12)

Combining (12) with (11), then (11) with (4) gives the final input-output equation:(
d

dt

n

(e0) +
d

dt

n−1
e1 + · · ·+

d

dt
en−1

)
yn =

(
n+1∏

i=p+1

ki,i−1

(
d

dt

p−2
e∗0 +

d

dt

p−3
e∗1 + ...+ e∗p−2)

))
u1.

(13)
The coefficients can now easily be extracted. Let ci represent the coefficients from the LHS
and dj the RHS.

ci = ei for i = 1, . . . , n− 1

dj =
n+1∏

i=p+1

ki,i−1e
∗
j for j = 0, ..., p− 2

2In the case of p = 2, the first product becomes the empty product, that is, 1.
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Theorem 3.4. Let M be an n-compartment cycle model with no leaks, exactly 1 input, and
exactly one output. Then M is generically locally identifiable.

Proof. Fix the input in the first compartment. If the input is not in the first compartment,
then relabel the model such that it is. If p = 1 (that is, both input and output are in
compartment-1), then the model is generically locally identifiable by Theorem 3.1.

Let
∏n+1

i=p+1 ki,i−1 =: L. By Proposition 2.2, a model is generically locally indentifiable if
the Jacobian matrix of the coefficient map is full rank. By Theorem 3.3, the coefficients are
as follows:

(e1, e2, ..., en−1, Le
∗
0, Le

∗
1, ..., Le

∗
p−2)

The row dimension of J(c) is n− 1 + p− 1 = n+ p− 2. Observe that the first n− 1 rows of
the Jacobian matrix are derived from the LHS’s elementary symmetric polynomials. There
are n parameters, therefore in order to reach a full rank matrix, we need only one row who,
when combined with the first (n− 1) rows, yields a nonzero determinant.

We select Le∗0, and since e∗0 = 1, simplifies to L. Define the set set Ẽ := {kp+1,p, ..., k1n}.
Then, L = ẽn−p+2. Then, let

∂

∂kp+1,p+i−1
L =

L

kp+1,p+i−1
=: ẽn−p+1{k̂p+1,p}. (14)

Note that Ẽ ⊂ E. The selected submatrix corresponding to rows specified above, J̃ , of the
full Jacobian matrix is:

J̃ =


1 1 . . . 1 1 . . . 1

e1{k̂21} e1{k̂32} . . . e1{k̂p,p−1} e1{k̂p+1,p} . . . e1{k̂1n}
...

. . .
...

en−2{k̂21} en−2{k̂32} . . . en−2{k̂p,p−1} en−2{k̂p+1,p} . . . en−2k̂1n}
0 0 . . . 0 ẽn−p+1{k̂p+1,p} . . . ẽn−p+1{k̂1n}


Now we only need to show that this matrix has a nonzero determinant. To do so, we do

expansion on the bottom row. Let J̃i represent the submatrix generated by removing the
bottom row and the column corresponding to ki,i−1. Then, det(J), up to a sign 3, is:

det J̃ =
n+1∑

i=p+1

±ẽn−p+1{ki,i−1} det(Ji). (15)

Each ẽn−p+1{k̂i,i−1} is nonzero, and by Corollary 3.1, for the submatrix, J̃i, generated by
removing the last row and ith column, each det(J̃i) is nonzero. Thus, we need to only show
that terms cannot cancel each other.

3The sign does not matter since the summation will not be zero
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Observe that ẽn−p+1{k̂i,i−1} det(J̃i) cannot contain ki,i−1. However, every other term will
contain ki,i−1 since they are still elementary symmetric polynomials on Ẽ and E. Therefore,
there can be no cancellation. Thus det(J) 6= 0, and J is full rank. Thus, the model is
generically locally identifiable.

Proof of Theorem 3.2. By, Theorem (3.4) the model without the leak is generically locally
identifiable. Then, by Theorem 4.3 from [3], adding the leak preserves identifiability.

3.4 A new model: Fin and Wing Models

We introduce a new family of models: Fin, Nemo, Wing, and Tweety-Bird models. These
models are a kind of hybrid between cycle and mammillary models. What relates each
of these models to the others is their “skeletons” are a cycle model. These models are
generated from a cycle model by adding what we term interior edges, or edges that go from
compartment 1 to any other compartment, except for k21 and k21. We term returning edges
as interior edges that go from compartment n to compartment 1. Similarly, we term “out-
going” edges as interior edges that go from compartment 1 to compartment n. We begin by
defining each of these new models. Figure 2 shows a Fin model.

k32

kn,n−1

k21

k1n

k43

k14

k13
k12

1

2 3

n

4

out

in

Fin

Figure 2: the n−compartment Fin model is obtained from the cycle model by adding all
interior edges such that they are returning edges.

Nemo models are Fin models with deleted returning edges. Any number of returning
edges can be removed. Just note that if all returning edges are removed, the model degen-
erates into a cycle model. Figure 3 shows an example of a Nemo model.
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Figure 3: an example of an n-compartment Nemo model.

Next, we have Wing models. Wing models are just like Fin models, except instead of
returning edges, the interior edges are out-going edges. Figure 4 shows an n−compartment
Wing model.
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kn1
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Wing

Figure 4: an example of an n−compartment Wing model.

Lastly, we define a Tweety-Bird model. Tweety-Bird models are to Wing models what
Nemo models are to Fin models: some of the interior edges are deleted (in this case, they
are out-going edges). As before, there is no order or set number of deleted edges, just note
that if all of the interior edges are deleted, the model degenerates into a cycle model. Figure
5 shows a Tweety-Bird Model.
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Figure 5: an example of an n−compartment Tweey-Bird Model.

Theorem 3.5. Let M̃ be a Fin, Wing, Nemo, or Tweety Bird Model that has exactly one
input and exactly one output in the first compartment only and exactly one leak. Then M̃ is
generically locally identifiable and so is M obtained by removing the leak.

We prove Theorem 3.5 by proving that each of the models, without a leak, are generically
locally identifiable. We do so in pairs: Fin and Nemo models, then Wing and Tweety-Bird
models.

3.4.1 Identifiability of Fin and Nemo Models

Theorem 3.6. Assume n ≥ 3. An n−compartment Fin model and any Nemo model gener-
ated by removing returning edges is generically locally identifiable.

It is easier to prove the Nemo model is identifiable from a Fin model, and so we first
prove that the Fin model is indentifiable.

Theorem 3.7. Assume n ≥ 3. For an n-compartment Fin model with no leaks, exactly one
input and one output, both in compartment-1, the coefficients of the input-output equation
are given by the coefficient map:

c : R2n−2 → R2n−1

such that

(k12, ..., k1n, k21, ..., kn,n−1) 7−→ (e′1, ..., e
′
n−1, e

∗
1, e
∗
2+

2∑
i=2

Pie
i
2−i, ..., e

∗
j+

j∑
i=2

Pie
i
j−i, ..., e

∗
n+

n∑
i=2

Pie
i
n−i)

where Pj = −k1j
∏j

i=2 ki,i−1, and ejm is the mth elementary symmetric on the set
Ej = {kj+2,j+1, ..., kn,n−1, k1n}, and e′m is the mth elementary symmetric polynomial on
E ′ = {k32, ..., kn,n−1, k1n}.
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Proof. Let M be a Fin model as outlined in the theorem. The associated (n×n) matrix, A,
is:

A =


−k21 k12 k13 . . . k1n
k21 −k32 0 0
0 k32 −k43
...

. . .

0 . . . kn,n−1 −k1n

.
Then, by Proposition 2.1, the input-output equation is:

det(∂I − A)y1 = det(∂I − A11)u1. (16)

The RHS of Equation (16) is significantly easier to compute, so we’ll begin there. By
Equation (16), the RHS is derived, in part, by removing the first row and first column from
A. The (∂I − A11) matrix, call it A1, is:

A1 =


d
dt
+ k32 0 . . . 0

−k32 d
dt
+ k43

...
...

. . . 0
0 . . . −kn,n−1 d

dt
+ k1n

.
A1 is a lower triangular matrix, therefore the determinant is:

n∏
i=2

(
d

dt
+ ki+1,i

)
. (17)

Recall that e′j is the jth elementary symmetric polynomials on E ′. Then, the RHS can be
written as:

det(A1)u1 =

(
d

dt

n−1
e′0 +

d

dt

n−2
e′1 + ...+

d

dt
e′n−2 + e′n−1

)
u1. (18)

The coefficients of the RHS can now be extracted, specifically they are the elementary
symmetric polynomials, e′0, e′1, ..., e′n−2, e′n−1 in Equation (18).

The LHS of Equation (16) is the determinant of the full (∂I −A) matrix. In computing
the determinant, the first term in the row expansion of the first row is simply the product
of the diagonal entries:

n∏
i=1

(
d

dt
+ ki+1,i

)
.

Let E∗ = {k21, k32, ..., kn,n−1, k1n}, and let e∗j denote the jth elementary symmetric poly-
nomial on E∗. Then, the product can be expanded to:

d

dt

n

e∗0 +
d

dt

n−1
e∗1 + ...+

d

dt
e∗n−1 + e∗n. (19)
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Then, for the kij term of the row expansion, the submatrix, denoted as Aj, is derived by
removing the first row and the jth column of (∂I − A):

Aj =



−k21 d
dt
+ k32 0 . . . 0

0 −k32
...

...
. . .

−kj,j−1 0
0 d

dt
+ kj+2,j+1

. . . 0
0 . . . 0 −kn,n−1 d

dt
+ k1n


.

This matrix can be rewritten as a block matrix:

Aj =

[
B 0
0 C

]
,

where B is a upper triangular matrix where the diagonal is composed of kijs and C is a
lower triangular matrix where the diagonal is composed of d

dt
+ kij. Thus, similarily as

before, det(Aj) = det(B) det(C). Therefore, the row expansion for the −kij term is:

−k1j
j∏

i=2

ki,i−1

n∏
i=j+1

(
d

dt
+ ki+1,i

)
. (20)

Recall that ejm is the mth elementary symmetric polynomial on Ej. Finally, recall Pj =
−k1j

∏j
i=2 ki,i−1. Then, Expression (20) can be rewritten as:

Pj

(
d

dt

n−j
ej0 +

d

dt

n−j−1
ej1 + ...+

d

dt
ejn−j1 + ejn−j

)
. (21)

The determinant of A, then, is the sum of Expression (21) and Expression (19):

d
dt

n
e∗0 +

d
dt

n−1
e∗1 +

d
dt

n−2 (
e∗2 +

∑2
i=2±Pje

i
2−i
)
+ ...+ d

dt

n−j
(
e∗j +

∑j
i=2±Pje

j
j−i

)
+ ...+(

e∗n +
∑n

i=2 Pie
j
j−i
)
.

This expression completes the computation for the LHS. The last coefficients can now be
extracted and the full coefficient map is complete:

c : R2n−2 → R2n−1

such that

(k12, ..., k1n, k21, ..., kn,n−1) 7−→
(e′1, ..., e

′
n−1, e

∗
1, e
∗
2 +

∑2
i=2 Pie

i
2−i, ..., e

∗
j +

∑j
i=2 Pie

i
j−i, ..., e

∗
n +

∑n
i=2 Pie

i
n−i)
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Theorem 3.8. Assume n ≥ 3. Let M be an n-compartment Fin model with no leaks,
exactly one input and one output, both in compartment one. Then M is generically locally
identifiable.

Proof. According to Proposition 2.2, it suffices to show that the Jacobian is full rank. Then,
by Theorem 3.7, there are (2n − 1) coefficients and only (2n − 2) parameters. Therefore,
we only need a (2n − 2) × (2n − 2) submatrix of the full Jacobian matrix with a nonzero
determinant. To do so, we shall use block matrices. Let J̃(c) represent the submatrix, with
block matrices W,X, Y, Z, where each block is (n− 1)× (n− 1):

J̃(c) =

[
X X
Y Z

]
.

We are going to construct a few of matrices (as it will become apparent, we do not need
to compute Y ). We begin with W .

We are going to select specific coefficients to correspond to specific rows, and the same for
parameters to columns. For W , the columns correspond to parameters (k1n, k32, ..., kn,n−1),
in that order. As for the rows, we selected the (e′1, e

′
2, ..., e

′
n−1) coefficients. Observe that

every parameter is a member of E ′. Therefore, W is as follows:

W =


1 1 . . . 1

e′1{k1n} e′1{k32} . . . e′1{kn,n−1}
...

. . .

e′n−2{k1n} e′n−2{k32} . . . e′n−2{kn,n−1}

.
By Lemma 3.1, det(W ) 6= 0. Therefore, the determinant of J̃(c) is as follows:

det(J̃(c)) = det(W ) det(Z − YW−1X). (22)

Next we turn to X. However, since k21 6∈ E ′ and k1j 6∈ E ′ for 2 ≤ j ≤ n − 1, X is the
zero matrix. Therefore, Equation (22) simplifies to:

det(J̃(c)) = det(W ) det(Z).

Thus, we need only show det(Z) 6= 0, and so we construct Z. For the columns, we
selected the remaining parameters in this order: (k21, k12, ..., k1,n−1). As for the rows, we
select the coefficients, in this order: (e∗1, e∗ +

∑2
i=2 Pie

i
2−i, ..., e

∗
n−1 +

∑n−1
i=1 Pie

i
n−1−i.

Since k1i|Pj when i ≤ j, and k1i 6∈ E∗
⋃
Ej, for 2 ≤ j ≤ n − 1, the partial derivative is

as follows:

∂

∂k1s
(e∗j +

j∑
i=2

Pie
i
j−i) =

Pi

k1s
esj−s := γsj . (23)

When i > j, the partial derivative is zero. We can actually construct Z now:
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Z =



1 0 . . . 0
γ22 0 . . . 0

γ33 0 . . . 0
. . .

γjj . . . 0

∗
. . .

γn−1n−1


.

Therefore, Z is a lower triangular matrix, and det(Z) is the product of gammas. Since
each gamma is nonzero, det(Z) 6= 0. Therefore,

det(J̃(c)) = det(W ) det(Z) 6= 0.

Then, by Proposition 2.2, the model is generically locally identifiable.

We are now ready to prove that Nemo Models are identifiable.

Proof of Theorem 3.6. Let N be the Nemo model derive from the n−compartment Fin
model. Let S ′ be the set containing all of the returning edges. That is, S ′ :=
{k12, k13, ..., k1,n−1}. Let S be the set containing the removed edges. Then, the set of return-
ing edges remaining in the Nemo model is S̃ := S ′ − S. (If S = ∅, then S̃ corresponds to a
Fin model, and if S = S ′, S̃ is a cycle model.)

Our approach is the same as before. We are going to keep the same Jacobian submatrix
and the same parameters and coefficients set up. We are going to change a coefficient
notation (it will become important in a moment).

Instead of e∗j +
∑j

i=2 Pie
i
j−i, we define it to be the following:

e∗j +
∑
t

Pte
t
j−t. (24)

for t such that k1t ∈ S ′

We are going to redefine a partial derivative as well:

∂

∂k1s

(
e∗j +

∑
t

Pte
t
j−t

)
=
Ps

k1s
esj−s := γ̃sj . (25)

for k1s ∈ S̃

Next we construct the Jacobian submatrix. Observe that e′j is not changed when a
returning edge is deleted, and since (k1n, k32, ..., kn,n−1) are not returning edges, W stays the
same, no matter which returning edges are deleted. Therefore:

det(J(c)) = det(W ) det(Z − YW−1X). (26)

Now, for every element of S, we do the following: Say k1j ∈ S. For the X matrix, we remove
the column corresponding to k1j. Therefore, X is still a zero matrix.
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Then, for the Z matrix, we again delete the column corresponding to k1j. Thus, Z is no
longer square. Therefore, we delete a row, specifically the row e∗s +

∑
t Pte

t
s−t, which brings

Z to be the following:

Z̃ =



1 0 . . . 0
γ̃22 0 . . . 0

. . .
...

γ̃s−1s−1 0 . . . 0
γ̃s+1
s+1 . . . 0

∗
. . .

...
γ̃n−1n−1


.

Thus, Z is still a lower triangular matrix. Repeat this process for every element in S.
Then, X will be a zero matrix, and Z is lower triangular with nonzero gammas. And thus,
we have the following:

det(J̃(c)) = det(W ) det(Z − YW−1X) = det(W ) det(Z) 6= 0.

Thus, the model is generically locally identifiable.

3.4.2 Identifiability of Wing and Tweety-Bird Models

Theorem 3.9. Assume n ≥ 3. The n− compartment Wing model and any n−compartment
Tweety-Bird model generated by removing out-going edges of the Wing model are generically
locally identifiable.

Just as it was with Fin and Nemo models, it is easier to prove that Tweety-Bird models
are identifiable after we show Wing models are identifiable.

Theorem 3.10. Assume n ≥ 3. For an n-compartment Wing model with no leaks and input
and output in the first compartment only, the coefficient map is given by:

c : R2n−2 7→ R2n−1

such that

(k32, ..., k1n, k21, k31, ..., kn1) 7→
(e′1, ..., en−1, e

∗
2 +

n∑
i=n

Qih
i
n−i, ..., e

∗
j +

n∑
i=n−j+2

Qih
i
n−i, ..., e

∗
n +

n∑
i=2

Qih
i
n−i)

where Q =: kj1k1n
∏n

i=j+1 ki,i−1, E
′ = {k32, k43, ..., kn,n−1, k1n} such that e′m is the mth ele-

mentary symmetric polynomial on E ′, E∗ =: {k21, ..., k1n} such that e∗m is the mth elementary
symmetric polynomial on E∗, and Hj =: {k32, k43, ..., kj,j−1} such that hjm is the mth elemen-
tary symmetric polynomial on Hj.

Proof. Let M be a wing model as outlined in the theorem. The associated (n× n) matrix,
A, is:
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A =


−k21 0 . . . 0 k1n
k21 −k32 0 . . . 0
k31 k32 −k43
...

. . .

kn1 0 . . . 0 kn,n−1 −k1n

.
Then, by Proposition 2.1, since the input and output are both in compartment one, the

input-output equation is again given by Equation (16), but with the A matrix above. Then,
the (∂I − A) matrix, call it A1, is:

A1 =


d
dt
+ k21 0 . . . 0 −k1n
−k21 d

dt
+ k32 0 . . . 0

−k31 −k32 d
dt
+ k43

...
. . .

−kn1 0 . . . 0 −kn,n−1 d
dt
+ k1n

.
Since the first row and first column are removed, the new matrix is same as matrix A1 in

Theorem 3.7, and the RHS is the same as in Equation (18). Therefore, the RHS coefficients
are the elementary symmetric polynomials e′j on E ′ from 1 ≤ j ≤ n.

For the LHS, the first term of the column expansion (we are going along column one), is
the same as in Equation (19). Then, for the kj1 term in the expansion, the matrix generated
by removing the first column and jth row, call it Aj is:

Aj =



0 . . . −k1n
d
dt
+ k32 0 . . . 0
...
0 . . . −kj−1,j−2 d

dt
+ kj,j−1 . . . 0

0 . . . −kj+1,j
d
dt
+ kj+2,j+1 . . .

...
. . .

0 . . . 0 −kn,n−1 d
dt
+ k1n


.

The determinant of Aj is the product of k1n and the determinant of the matrix generated
by removing the first row and last column of Aj. Call this new matrix Aj

∗, which can be
written as a block matrix:

Aj
∗ =

[
M N
O P

]
.

Both N and O are the zero matrix. M is a lower triangular matrix where the diagonal is
composed of d

dt
+kj+1,j, and P is an upper triangular matrix where the diagonal is composed

of ki,i−1. Thus,

det(Aj) = −k1n
n∏

i=j+1

ki,i−1

j−1∏
i=2

(
d

dt
+ ki+1,i

)
. (27)

19



Then, combining Expression (27) and Equation (19) yields:

det(A1) =
d

dt

n

e∗0 +
d

dt

n−1
e∗1 + ...+

d

dt
e∗n−1 + e∗n +

n∑
i=2

−k1i det(Ai). (28)

Expanding the summation, and grouping by dj

dt
, the LHS of the input-output equation is:

(
d

dt

n

e∗0 +
d

dt

n−1
e∗1 + ...+

d

dt

n−j
(
e∗j +

n∑
i=n−j+2

Qih
i
n−i

)
+ ...+ e∗n +

n∑
i=2

Qih
i
n−i

)
y1 (29)

for 2 ≤ j ≤ n. Note that the superscript in Equation (3.10) can be rewritten as:

d

dt

j−2
(
e∗n−j+2 +

n∑
i=j

Qih
i
n−i

)
.

We can now collect the coefficients from the RHS and the LHS and produce the coefficient
map:

(k32, ..., k1n, k21, k31, ..., kn1) 7→
(e′1, ..., e

′
n−1, e

∗
2 +

n∑
i=n

Qih
i
n−i, ..., e

∗
j +

n∑
i=n−j+2

Qih
i
n−i, ..., e

∗
n +

n∑
i=2

Qih
i
n−i)

Theorem 3.11. Assume n ≥ 3. Let M an n-compartment Wing model with no leaks and
input and output in the first compartment only. Then M is generically locally identifiable.

Proof. The proof follows similarly to Theorem 3.8. Once again, we pick (2n−2) coefficients,
and construct the J̃(c) by using block matrices.

J̃(c) =

[
W X
Y Z

]
Once again, for W and X, we select the (e′1, e

′
2, ..., e

′
n−1) coefficients from Theorem 3.10.

For W , we pick the same parameters as in Theorem 3.8. Therefore, W is the same as
in Theorem 3.8. Then, for X and Z, we select (k21, kn1, kn−1,1, ..., k31). Since all of these
parameters are not in E ′, X is once again the zero matrix.

As for the Z matrix, the same idea holds. We select the coefficients (e∗1, e
∗
2 +∑n

i=nQih
i
n−i, ..., e

∗
n−1 +

∑n
i=3Qih

i
n−i in that order. Then, for ks1, we calculate the par-

tial derivative. Observe that kj1|Qi when j = i. When i > j, the partial derivative is zero.
Then,

∂

∂ks1

(
e∗j +

n∑
i=n−j+2

Qih
i
n−i

)
=
Qs

ks1
hsn−s =: ζsj (30)

Thus, Z can be written as:
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Z =


1 0 . . . 0

ζn2 0 . . . 0
ζn−13 0

∗
. . .

...
ζ3n−1


Therefore, Z is a lower triangular matrix with nonzero diagonal entries, and det(Z) 6= 0.

Thus, det(J̃(c)) 6= 0. This computation completes the proof.

Now we are ready to prove Tweety-Bird models are identifiable.

Proof of Theorem 3.9. The proof is similar to the proof of Theorem 3.6. Let S ′ be the set
containing all of the out going edges. That is, S ′ := {k21, k31, ..., kn−1,1}. Let S be the set
containing the removed edges. Then, the set of outgoing edges remaining in the Tweety-Bird
model is S̃ := S ′ − S. Assume ks1 ∈ S. Removing ks1 does not change W . A column is
removed from X, but is still the zero matrix. As for Z, we will show the altered coefficients.
Instead of e∗j +

∑n
n−j+2Qih

i
n−i, we have:

e∗j +
∑
t

Qth
t
n−t (31)

for t such that kt1 ∈ S̃

We are going to make a similar adjustment to the partial derivatives. Let

∂

∂ku1

(
e∗j +

∑
t

Qth
t
j−t

)
= Quh

t
n−u =: ζ̃uj (32)

for ku1 ∈ S̃ and u ≤ j

Delete the column corresponding to ks1, as well as the row corresponding to s as well (that
is, e∗s + ...). Thus, Z will be lower triangular. Repeat this process for every element of S.
Thus, Z is lower diagonal with nonzero diagonal entries, and thus det(Z) 6= 0. Therefore,
det(Z) 6= 0. This computation completes the proof.

Proof of Theorem 3.5. By Theorems 3.6 and 3.9, the models without the leak are generically
locally identifiable. Since each of these models are strongly connected, by Theorem 4.3 in
[3], adding a leak to any compartment preserves identifiability. Thus, both M̃ and M are
generically locally identifiable.

4 Discussion
In this section, we discuss potential future research as well as some reflections on the methods
used in this work.
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4.1 Future Research

One immediate new project is what happens when an interior edge is flipped in a Fin (or
Wing) model. That is, a returning (out-going) edge if flipped to an out-going (returning)
edge. Call these models Augmented Fin (Wing) models. These models can have interior
edges flipped or removed. However, note that doubling an edge, that is, to have both a
returning edge and an out-going edge for for a given compartment, makes things a little
tricky. We must ensure that we not have more than 2n−1 parameters, otherwise the matrix
cannot be full rank with respect to the parameters. Figure 6 gives an example, where the
highlighted parameter has been flipped.

k32

kn,n−1

k21

k1n

k43

k41

k13
k12

1

2 3

n

4

out

in

Augmented-Fin

Figure 6

We believe that these models are identifiable, and so offer the following conjecture:

Conjecture 4.1. Assume n ≥ 3. LetM be an n-compartment Augmented Fin(Wing) model
with input and output located in compartment 1. M is generically locally identifiable.

The LHS of the input-output equation is the same as in Theorem 3.6. Thus, the W
block matrix of the Jacobian submatrix, J̃(c), is the same, and since none of the interior
edges are in E ′, the X matrix remains the zero matrix. Therefore, one only need show that
det(Z) 6= 0. One further question to ask if what operations preserve identifiabilty with the
new models, such as moving the output/input, or adding different components.

4.2 Reflections on the methods used

We relied heavily upon the theory of linear algebra. These methods allowed us to construct
the Fin and wing models because we took advantage of a nice (∂I−A) matrix that produced
triangular matrices in the computations. Thus, coefficient maps were fairly easy to obtain.
However, the Jacobian matrices were still difficult: it took us a significant amount of time
to find the correct arrangement of rows and columns for the Fin and Wing models. So, our
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methods did not necessarily produce nice Jacobians, and so identifiability is not necessarily
easier to achieve with these methods. Still, it is difficult to find a Jacobian matrix without
the coefficient map, and so our method is useful for finding the coefficient map.

We took advantage of triangular matrices because their determinants are easy to compute.
If there are other matrices with easy determinants, models could be constructed according
to nice (∂I − A matrices. However, identifiability may be tough to prove.
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