Probability of Easily Approximating Positive Reals Roots of Trinomials

Laurel Newman

Harvey Mudd College

26 July 2019

- 2 Failure Probability vs. Exponent Ratio
- 3 Failure Probability vs. Variance Ratio
- Upper Bounding Failure Probability vs. Variance Ratio
 Small sigma: linear
 Lenge sigma y^{-k}
 - Large sigma: x^{-k}

Univariate Trinomials

Let
$$f(x) = c_1 x^{\alpha_0} + c_2 x^{\alpha_1} + c_3 x^{\alpha_2}$$

- $\bullet \alpha_0 < \alpha_1 < \alpha_2$
- $\bullet c_i \sim N(0, \sigma_i)$
- generally, $\alpha_0 = 0$

Spread

spread
$$(f) \coloneqq \frac{\min(\alpha_1 - \alpha_0, \alpha_2 - \alpha_1)}{\alpha_2 - \alpha_0}$$

4

Spread

spread
$$(f) \coloneqq \frac{\min(\alpha_1 - \alpha_0, \alpha_2 - \alpha_1)}{\alpha_2 - \alpha_0}$$

spread $(c_1 x^{\alpha_0} + c_2 x^{\frac{\alpha_0 + \alpha_2}{2}} + c_3 x^{\alpha_2}) = 0.5$
so $\alpha_1 \to \alpha_0$ or α_2 , spread $(f) \to 0$

Experimental Consideration

What is the relationship between the spread of a trinomial f and its failure probability?

Experimental Consideration

What is the relationship between the spread of a trinomial f and its failure probability?

Method:

- fix α_2
- iterate α_1 from $[1, \alpha_2 1]$
- 1,000,000 trials per ratio
- generate new random standard Gaussian coefficients each trial

Trinomial Exponent Ratio: Results I

- $f = c_1 + c_2 x^{\alpha_1} + c_3 x^{100}$
 - 99 exponent ratios
 - scipy's curve_fit function

Trinomial Exponent Ratio: Results I

$$f = c_1 + c_2 x^{\alpha_1} + c_3 x^{100}$$

- 99 exponent ratios
- scipy's curve_fit function

 $h(x) = 0.61353465 + 21.87751589x - 21.86653471x^2$

Trinomial Exponent Ratio: Results II

$$f = c_1 + c_2 x^{\alpha_1} + c_3 x^{100}$$

99 exponent ratios

 $h(x) = 0.61353465 + 21.87751589x - 21.86653471x^2$

$$f = c_1 + c_2 x^{\alpha_1} + c_3 x^{25}$$

 $h(x) = 0.70218905 + 21.39398914x - 21.38648046x^2$

$$f = c_1 + c_2 x^{\alpha_1} + c_3 x^{1987}$$

$$\bullet \alpha_1 \in [19, 1900]$$

$$\bullet h(x) = 0.65875168 + 21.56950267x - 21.5027753x^2$$

Trinomial Exponent Ratio: Results III

$$f = c_1 x^{24} + c_2 x^{a_1} + c_3 x^{626}$$

100 exponent ratios
x-axis $\frac{24}{\alpha_1}$

L. Newman (HMC)

Trinomial Exponent Ratio: Conjectures

Experimental Hypotheses

The graph of the failure probability as a function of trinomial spread is, roughly, a parabola or ellipse

Trinomial Exponent Ratio: Conjectures

Experimental Hypotheses

- The graph of the failure probability as a function of trinomial spread is, roughly, a parabola or ellipse
- Failure probability appears to never exceed 6%

Trinomial Exponent Ratio: Conjectures

Experimental Hypotheses

- The graph of the failure probability as a function of trinomial spread is, roughly, a parabola or ellipse
- Failure probability appears to never exceed 6%
- Failure probability also depends on variance ratios

Experimental Consideration

What is the relationship between the failure probability of f, a quadratic polynomial, and $\frac{\sigma_2}{\sigma_1}$, recalling that $c_i \sim N(0, \sigma_i)$?

Experimental Consideration

What is the relationship between the failure probability of f, a quadratic polynomial, and $\frac{\sigma_2}{\sigma_1}$, recalling that $c_i \sim N(0, \sigma_i)$?

Method:

- 100 values of σ_2 in [0.1, 10]
- 1,000,000 trials per ratio
- generate c_1 and c_3 from standard Gaussian distributions, and c_2 from $N(0,\sigma_2)$ each trial

Quadratic Variance Ratio: Results I

Varying the standard deviation of c_2 :

 $\sigma_2 \in [0.1, 10]$

Figure: Quadratic σ_2 vs. Failure Probability

 $h(x) = -1.03061413 + 15.572038x^{1.0356945}e^{-1.04617418x} + 1.76374323xe^{-0.20716401x}$

Quadratic Variance Ratio: Results II

Varying the standard deviation of c_3 :

 $\sigma_3 \in [0.1, 100]$

Quadratic Variance Ratio: Results II

Varying the standard deviation of c_3 :

• $\sigma_3 \in [0.1, 100]$

Figure: Quadratic σ_3 vs. Failure Probability

 $h(x) = 0.85961511 + 6.15174179x^{0.13562741}e^{-0.26987804x} + 0.35691471xe^{-0.10525011x}$

L. Newman (HMC)

Variance Ratio for Trinomials with Small Spread

Experimental Consideration

What is the relationship between the failure probability of $f = c_1 + c_2 x^{99} + c_3 x^{100}$ and $\frac{\sigma_2}{\sigma_1}$, recalling that $c_i \sim N(0, \sigma_i)$?

Variance Ratio for Trinomials with Small Spread

Experimental Consideration

What is the relationship between the failure probability of $f = c_1 + c_2 x^{99} + c_3 x^{100}$ and $\frac{\sigma_2}{\sigma_1}$, recalling that $c_i \sim N(0, \sigma_i)$?

Method:

- 100 values of σ_2 in [0.1, 60]
- 1,000,000 trials per ratio
- generate c_1 and c_3 from standard Gaussian distributions, and c_2 from $N(0,\sigma_2)$ each trial

13

Tight Trinomial Variance Ratio: Results I

Varying the standard deviation of c_2 :

 $h(x) = -0.06450709 + 0.18826155x^{0.55247034}e^{-0.15034146x} - 1.03096168xe^{-1.09906311x}$

Tight Trinomial Variance Ratio: Results II

Varying the standard deviation of c_1 :

Figure: σ_1 vs. Failure Probability

L. Newman (HMC)

New Experimental Questions

Can we simplify the fit functions in some way?

New Experimental Questions

Can we simplify the fit functions in some way?
 Idea: Could using multiple simple piecewise functions approximate the failure probabilities?

- Can we simplify the fit functions in some way?
 Idea: Could using multiple simple piecewise functions approximate the failure probabilities?
- Can we extract meaning from the coefficients of the fit functions?

- Can we simplify the fit functions in some way?
 Idea: Could using multiple simple piecewise functions approximate the failure probabilities?
- Can we extract meaning from the coefficients of the fit functions? Idea: Do the coefficients have a relationship to the exponent spread of the polynomial?

- Can we simplify the fit functions in some way?
 Idea: Could using multiple simple piecewise functions approximate the failure probabilities?
- Can we extract meaning from the coefficients of the fit functions? Idea: Do the coefficients have a relationship to the exponent spread of the polynomial?
- Can we transform the fit functions into upper bounds?

- Can we simplify the fit functions in some way?
 Idea: Could using multiple simple piecewise functions approximate the failure probabilities?
- Can we extract meaning from the coefficients of the fit functions? Idea: Do the coefficients have a relationship to the exponent spread of the polynomial?
- Can we transform the fit functions into upper bounds?
 Idea: Can we find specific coefficients that upper bound the failure probabilities for all exponent spreads?

Can we simplify the fit functions in some way?

Figure: Piecewise linear and x^{-k} fit functions for failure probability vs. σ

L. Newman (HMC)

Piecewise Variance Ratio: $\sigma_2 \leq 1$

Experimental Consideration

What is the minimum slope that upper bounds the failure probability when $\sigma_2 \leq 1$?

 $f(x) = c_1 + c_2 x + c_3 x^2$

Figure: Linear upper bound and fit lines for failure probability vs. $\sigma \leq 1$

L. Newman (HMC)

Experimental Consideration

What is the minimum slope that upper bounds the failure probability when $\sigma_2 \leq 1$, and what is its relationship to the trinomial's spread?

Experimental Consideration

What is the minimum slope that upper bounds the failure probability when $\sigma_2 \leq 1$, and what is its relationship to the trinomial's spread?

Method:

- 10 exponent ratios in [0.1,1]
 - 10 values of σ_2 in [0.1, 1]
 - 100,000 trials per σ_2
 - generate c_1 and c_3 from standard Gaussian distributions, and c_2 from $N(0,\sigma_2)$ each trial
 - find upper bound curve of form g(x) = ax
- per trinomial exponent ratio, average 10 values of *a*

Piecewise Variance Ratio: $\sigma_2 \leq 1$ Results

Figure: Minimum slopes for upper bound line vs. trinomial exponent ratio

Piecewise Variance Ratio: $\sigma_2 \leq 1$ Results

$$g(x) = a\sqrt{\frac{\max(\alpha_1, \alpha_2 - \alpha_1)}{\alpha_2}}x$$

Figure: Minimum slopes for upper bound line vs. trinomial exponent ratio

L. Newman (HMC)

Trinomial Failure Regions

Experimental Consideration

Finding a function of the form $g(x) = ax^{-k}$ which is an upper bound for failure probability when $\sigma_2 \ge 1$.

Experimental Consideration

Finding a function of the form $g(x) = ax^{-k}$ which is an upper bound for failure probability when $\sigma_2 \ge 1$.

Method:

- 10 exponent ratios in [0.1, 1]
 - 10 values of σ_2 in [1, 20]
 - **1**,000,000 trials per σ_2
 - generate c_1 and c_3 from standard Gaussian distributions, and c_2 from $N(0,\sigma_2)$ each trial
 - fit data to $g(x) = ax^{-k}$ using scipy's curve_fit function
 - increment k until g is an upper bound curve
- per exponent ratio, average 10 values of k

Piecewise Variance Ratio: $\sigma_2 \ge 1$ Results I

Figure: Upper bound constants and exponents vs. trinomial exponent ratios

Piecewise Variance Ratio: $\sigma_2 \ge 1$

Experimental Consideration

What is the minimum upper bound curve of the form $g(x) = ax^{-0.9}$ for failure probability when $\sigma_2 \ge 1$.

Piecewise Variance Ratio: $\sigma_2 \ge 1$

Experimental Consideration

What is the minimum upper bound curve of the form $g(x) = ax^{-0.9}$ for failure probability when $\sigma_2 \ge 1$.

Method:

- 10 exponent ratios in [0.1, 1]
- 10 values of σ_2 in [1, 20]
- **1**,000,000 trials per σ_2
- generate c_1 and c_3 from standard Gaussian distributions, and c_2 from $N(0,\sigma_2)$ each trial
- fit data to $g(x) = ax^{-0.9}$ using scipy's curve_fit function
- increment a until g is an upper bound curve
- select maximum a

Piecewise Variance Ratio: $\sigma_2 \ge 1$ Results II

 $g(x) = 6.5x^{-0.9}$

- Tighter bound lines (especially for $\sigma \ge 1$)?
- Coefficient meaning for $\sigma \ge 1$?
 - Possible dependence on spread?
- Can we establish theoretical bounds that support these experimental results?
- Can we otherwise characterize the polynomials which fail?

Thank you for listening!

Extra thanks to Prof. Maurice Rojas, Joann Coronado, and the National Science Foundation.