Probability of Easily Approximating Positive Reals Roots of Trinomials

Laurel Newman
Harvey Mudd College

26 July 2019

Outline

1 Notation

2 Failure Probability vs. Exponent Ratio

3 Failure Probability vs. Variance Ratio

4 Upper Bounding Failure Probability vs. Variance Ratio

- Small sigma: linear
- Large sigma: x^{-k}

Notation

$$
\begin{aligned}
& \text { Univariate Trinomials } \\
& \left.\begin{array}{l}
\text { Let } f(x)=c_{1} x^{\alpha_{0}}+c_{2} x^{\alpha_{1}}+c_{3} x^{\alpha_{2}} \\
\quad-\alpha_{0}<\alpha_{1}<\alpha_{2} \\
\\
\square \\
c_{i} \sim N\left(0, \sigma_{i}\right) \\
\\
\square
\end{array}\right) \text { generally, } \alpha_{0}=0
\end{aligned}
$$

Notation

Spread

$\operatorname{spread}(f):=\frac{\min \left(\alpha_{1}-\alpha_{0}, \alpha_{2}-\alpha_{1}\right)}{\alpha_{2}-\alpha_{0}}$

Notation

Spread

$\operatorname{spread}(f):=\frac{\min \left(\alpha_{1}-\alpha_{0}, \alpha_{2}-\alpha_{1}\right)}{\alpha_{2}-\alpha_{0}}$
$\square \operatorname{spread}\left(c_{1} x^{\alpha_{0}}+c_{2} x^{\frac{\alpha_{0}+\alpha_{2}}{2}}+c_{3} x^{\alpha_{2}}\right)=0.5$
as $\alpha_{1} \rightarrow \alpha_{0}$ or $\alpha_{2}, \operatorname{spread}(f) \rightarrow 0$

Trinomial Exponent Ratio

Experimental Consideration

What is the relationship between the spread of a trinomial f and its failure probability?

Trinomial Exponent Ratio

Experimental Consideration

What is the relationship between the spread of a trinomial f and its failure probability?

Method:

- fix α_{2}
- iterate α_{1} from [$1, \alpha_{2}-1$]
- 1,000,000 trials per ratio
- generate new random standard Gaussian coefficients each trial

Trinomial Exponent Ratio: Results I

$$
f=c_{1}+c_{2} x^{\alpha_{1}}+c_{3} x^{100}
$$

- 99 exponent ratios
- scipy's curve_fit function

Trinomial Exponent Ratio: Results I

$f=c_{1}+c_{2} x^{\alpha_{1}}+c_{3} x^{100}$

- 99 exponent ratios
- scipy's curve_fit function

Figure: $\frac{\alpha_{1}}{100}$ vs. Failure Probability

$$
h(x)=0.61353465+21.87751589 x-21.86653471 x^{2}
$$

Trinomial Exponent Ratio: Results II

$$
f=c_{1}+c_{2} x^{\alpha_{1}}+c_{3} x^{100}
$$

- 99 exponent ratios
$\square h(x)=0.61353465+21.87751589 x-21.86653471 x^{2}$

$$
f=c_{1}+c_{2} x^{\alpha_{1}}+c_{3} x^{25}
$$

- 24 exponent ratios
$\square h(x)=0.70218905+21.39398914 x-21.38648046 x^{2}$

$$
\begin{aligned}
f & =c_{1}+c_{2} x^{\alpha_{1}}+c_{3} x^{1987} \\
& \square \alpha_{1} \in[19,1900] \\
& \square h(x)=0.65875168+21.56950267 x-21.5027753 x^{2}
\end{aligned}
$$

Trinomial Exponent Ratio: Results III

$$
\begin{aligned}
f & =c_{1} x^{24}+c_{2} x^{a_{1}}+c_{3} x^{626} \\
& ■ 100 \text { exponent ratios } \\
& \boxed{ } \text { x-axis } \frac{24}{\alpha_{1}}
\end{aligned}
$$

Figure: $\frac{24}{\alpha_{1}}$ vs. Failure Probability

$$
h(x)=-0.27225719+23.51542209 x-21.77854389 x^{2}
$$

Trinomial Exponent Ratio: Conjectures

Experimental Hypotheses

- The graph of the failure probability as a function of trinomial spread is, roughly, a parabola or ellipse

Trinomial Exponent Ratio: Conjectures

Experimental Hypotheses

- The graph of the failure probability as a function of trinomial spread is, roughly, a parabola or ellipse
- Failure probability appears to never exceed 6%

Trinomial Exponent Ratio: Conjectures

Experimental Hypotheses

- The graph of the failure probability as a function of trinomial spread is, roughly, a parabola or ellipse
- Failure probability appears to never exceed 6%
- Failure probability also depends on variance ratios

Quadratic Variance Ratio

Experimental Consideration

What is the relationship between the failure probability of f, a quadratic polynomial, and $\frac{\sigma_{2}}{\sigma_{1}}$, recalling that $c_{i} \sim N\left(0, \sigma_{i}\right)$?

Quadratic Variance Ratio

Experimental Consideration

What is the relationship between the failure probability of f, a quadratic polynomial, and $\frac{\sigma_{2}}{\sigma_{1}}$, recalling that $c_{i} \sim N\left(0, \sigma_{i}\right)$?

Method:

- 100 values of σ_{2} in $[0.1,10]$
- 1,000,000 trials per ratio
- generate c_{1} and c_{3} from standard Gaussian distributions, and c_{2} from $N\left(0, \sigma_{2}\right)$ each trial

Quadratic Variance Ratio: Results I

Varying the standard deviation of c_{2} :

- $\sigma_{2} \in[0.1,10]$

Figure: Quadratic σ_{2} vs. Failure Probability

$$
h(x)=-1.03061413+15.572038 x^{1.0356945} e^{-1.04617418 x}+1.76374323 x e^{-0.20716401 x}
$$

Quadratic Variance Ratio: Results II

Varying the standard deviation of c_{3} :
$-\sigma_{3} \in[0.1,100]$

Quadratic Variance Ratio: Results II

Varying the standard deviation of c_{3} :

- $\sigma_{3} \in[0.1,100]$

Figure: Quadratic σ_{3} vs. Failure Probability
$h(x)=0.85961511+6.15174179 x^{0.13562741} e^{-0.26987804 x}+0.35691471 x e^{-0.10525011 x}$

Variance Ratio for Trinomials with Small Spread

Experimental Consideration

What is the relationship between the failure probability of $f=c_{1}+c_{2} x^{99}+c_{3} x^{100}$ and $\frac{\sigma_{2}}{\sigma_{1}}$, recalling that $c_{i} \sim N\left(0, \sigma_{i}\right)$?

Variance Ratio for Trinomials with Small Spread

Experimental Consideration

What is the relationship between the failure probability of $f=c_{1}+c_{2} x^{99}+c_{3} x^{100}$ and $\frac{\sigma_{2}}{\sigma_{1}}$, recalling that $c_{i} \sim N\left(0, \sigma_{i}\right) ?$

Method:

- 100 values of σ_{2} in [0.1, 60]
- 1,000,000 trials per ratio
- generate c_{1} and c_{3} from standard Gaussian distributions, and c_{2} from $N\left(0, \sigma_{2}\right)$ each trial

Tight Trinomial Variance Ratio: Results I

Varying the standard deviation of c_{2} :

Figure: σ_{2} vs. Failure Probability

$$
h(x)=-0.06450709+0.18826155 x^{0.55247034} e^{-0.15034146 x}-1.03096168 x e^{-1.09906311 x}
$$

Tight Trinomial Variance Ratio: Results II

Varying the standard deviation of c_{1} :

Figure: σ_{1} vs. Failure Probability

Trinomial Variance Ratio: Conjectures

New Experimental Questions

- Can we simplify the fit functions in some way?

Trinomial Variance Ratio: Conjectures

New Experimental Questions

- Can we simplify the fit functions in some way? Idea: Could using multiple simple piecewise functions approximate the failure probabilities?

Trinomial Variance Ratio: Conjectures

New Experimental Questions

- Can we simplify the fit functions in some way?

Idea: Could using multiple simple piecewise functions approximate the failure probabilities?

- Can we extract meaning from the coefficients of the fit functions?

Trinomial Variance Ratio: Conjectures

New Experimental Questions

- Can we simplify the fit functions in some way? Idea: Could using multiple simple piecewise functions approximate the failure probabilities?
- Can we extract meaning from the coefficients of the fit functions? Idea: Do the coefficients have a relationship to the exponent spread of the polynomial?

Trinomial Variance Ratio: Conjectures

New Experimental Questions

- Can we simplify the fit functions in some way?

Idea: Could using multiple simple piecewise functions approximate the failure probabilities?

- Can we extract meaning from the coefficients of the fit functions? Idea: Do the coefficients have a relationship to the exponent spread of the polynomial?
- Can we transform the fit functions into upper bounds?

Trinomial Variance Ratio: Conjectures

New Experimental Questions

- Can we simplify the fit functions in some way?

Idea: Could using multiple simple piecewise functions approximate the failure probabilities?

- Can we extract meaning from the coefficients of the fit functions? Idea: Do the coefficients have a relationship to the exponent spread of the polynomial?
- Can we transform the fit functions into upper bounds? Idea: Can we find specific coefficients that upper bound the failure probabilities for all exponent spreads?

Can we simplify the fit functions in some way?

Figure: Piecewise linear and x^{-k} fit functions for failure probability vs. σ

Piecewise Variance Ratio: $\sigma_{2} \leq 1$

Experimental Consideration

What is the minimum slope that upper bounds the failure probability when $\sigma_{2} \leq 1$?
$f(x)=c_{1}+c_{2} x+c_{3} x^{2}$

Figure: Linear upper bound and fit lines for failure probability vs. $\sigma \leq 1$

Piecewise Variance Ratio: $\sigma_{2} \leq 1$

Experimental Consideration

What is the minimum slope that upper bounds the failure probability when $\sigma_{2} \leq 1$, and what is its relationship to the trinomial's spread?

Piecewise Variance Ratio: $\sigma_{2} \leq 1$

Experimental Consideration

What is the minimum slope that upper bounds the failure probability when $\sigma_{2} \leq 1$, and what is its relationship to the trinomial's spread?

Method:

- 10 exponent ratios in $[0.1,1]$
- 10 values of σ_{2} in $[0.1,1]$
- 100,000 trials per σ_{2}
- generate c_{1} and c_{3} from standard Gaussian distributions, and c_{2} from $N\left(0, \sigma_{2}\right)$ each trial
- find upper bound curve of form $g(x)=a x$
- per trinomial exponent ratio, average 10 values of a

Piecewise Variance Ratio: $\sigma_{2} \leq 1$ Results

Figure: Minimum slopes for upper bound line vs. trinomial exponent ratio

Piecewise Variance Ratio: $\sigma_{2} \leq 1$ Results

$$
g(x)=a \sqrt{\frac{\max \left(\alpha_{1}, \alpha_{2}-\alpha_{1}\right)}{\alpha_{2}}} x
$$

Figure: Minimum slopes for upper bound line vs. trinomial exponent ratio

Piecewise Variance Ratio: $\sigma_{2} \geq 1$

Experimental Consideration

Finding a function of the form $g(x)=a x^{-k}$ which is an upper bound for failure probability when $\sigma_{2} \geq 1$.

Piecewise Variance Ratio: $\sigma_{2} \geq 1$

Experimental Consideration

Finding a function of the form $g(x)=a x^{-k}$ which is an upper bound for failure probability when $\sigma_{2} \geq 1$.

Method:

- 10 exponent ratios in $[0.1,1]$
- 10 values of σ_{2} in $[1,20]$
- 1,000,000 trials per σ_{2}
- generate c_{1} and c_{3} from standard Gaussian distributions, and c_{2} from $N\left(0, \sigma_{2}\right)$ each trial
- fit data to $g(x)=a x^{-k}$ using scipy's curve_fit function
- increment k until g is an upper bound curve
- per exponent ratio, average 10 values of k

Piecewise Variance Ratio: $\sigma_{2} \geq 1$ Results I

Figure: Upper bound constants and exponents vs. trinomial exponent ratios

Piecewise Variance Ratio: $\sigma_{2} \geq 1$

Experimental Consideration

What is the minimum upper bound curve of the form $g(x)=a x^{-0.9}$ for failure probability when $\sigma_{2} \geq 1$.

Piecewise Variance Ratio: $\sigma_{2} \geq 1$

Experimental Consideration

What is the minimum upper bound curve of the form $g(x)=a x^{-0.9}$ for failure probability when $\sigma_{2} \geq 1$.

Method:

- 10 exponent ratios in $[0.1,1]$
- 10 values of σ_{2} in $[1,20]$
- 1,000,000 trials per σ_{2}
- generate c_{1} and c_{3} from standard Gaussian distributions, and c_{2} from $N\left(0, \sigma_{2}\right)$ each trial
- fit data to $g(x)=a x^{-0.9}$ using scipy's curve_fit function
- increment a until g is an upper bound curve
- select maximum a

Piecewise Variance Ratio: $\sigma_{2} \geq 1$ Results II

$$
g(x)=6.5 x^{-0.9}
$$

Figure: $f(x)=c_{1}+c_{2} x+c_{3} x^{2}$

Figure: $f(x)=c_{1}+c_{2} x^{99}+c_{3} x^{100}$

Further Work

- Tighter bound lines (especially for $\sigma \geq 1$)?
- Coefficient meaning for $\sigma \geq 1$?
- Possible dependence on spread?

■ Can we establish theoretical bounds that support these experimental results?

- Can we otherwise characterize the polynomials which fail?

Acknowledgments

Thank you for listening!

Extra thanks to Prof. Maurice Rojas, Joann Coronado, and the National Science Foundation.

