root counting for arbitrary curves over prime power RINGS

CALEB ROBELLE, J. MAURICE ROJAS, AND YUYU ZHU

Abstract

Let $k, p \in \mathbb{N}$ with p prime and $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial in n variables with degree d. Counting the roots of f over $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)^{n}$ has applications in cryptography, integer factorization, and coding theory. We extend an algorithm for counting the number of roots of a univariate polynomial over $\mathbb{Z} /\left\langle p^{k}\right\rangle$ to polynomials in n variables over $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)^{n}$. We prove a complexity of $O\left(d k p^{2 n}\right)$ for our algorithm.

1. Introduction

Let $k, p \in \mathbb{N}$ with p prime and $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial in n variables with nonzero degree d. Computing the number of roots of f over $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)^{n}$, denoted by $N_{p, k}(f)$, has applications in cryptography, integer factorization, and coding theory. Previous work has resulted in an algorithm that can compute the number of roots of a univariate polynomial with non-zero degree over $\mathbb{Z} /\left\langle p^{k}\right\rangle$ in time $k d^{3}(k \log p)^{1}+o(1)+\left(d k \log ^{2} p\right)^{1+o(1)}[1]$. Less is know regarding algorithms for counting roots of multivariate polynomials over prime power rings. We extend the algorithm from [1] to arbitrary polynomials in n variables.

Theorem 1.1. Let $f(x)(x) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, d is the degree of f, and $k, p \in \mathbb{N}$ with p prime. Then one can compute $\#\left\{\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)^{n} \mid f\left(x_{1}, \ldots, x_{n}\right)=0\right\}$ in time $O\left(d k p^{2 n}\right)$.

Our algorithm reduces counting over $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)^{n}$ to repeated counting over $(\mathbb{Z} /\langle p\rangle)^{n}$. We establish a bound on the number of times we have to count over $(\mathbb{Z} /\langle p\rangle)^{n}$ which leads to the complexity given in theorem 1.1. We will now introduce some definitions that will be necessary in our proofs later on. Let $x:=\left(x_{1}, \ldots, x_{n}\right)$ denote an n-tuple, and Let $f(x) \in$ $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial in n variables over the integers. Then, for $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{Z}^{n}$ the multi-dimensional Taylor expansion of f at ζ is

$$
f(x)=\sum_{i_{1}, \ldots, i_{n}} D^{i_{1} \ldots i_{n}} f(\zeta)\left(x_{1}-\zeta_{1}\right)^{i_{1}} \ldots\left(x_{n}-\zeta_{n}\right)^{i_{n}}
$$

where $i_{1} \ldots, i_{n}$ are non-negative integers, and $D^{i_{1} \ldots i_{n}} f(x)$ denotes the multi-dimensional Hasse derivative, defined as

$$
D^{i_{1} \ldots i_{n}}\left(\sum_{j_{1}, \ldots, j_{n}} c_{j_{1}, \ldots j_{n}} x_{1}^{j_{1}} \ldots x_{n}^{j_{n}}\right):=\sum_{j_{1}, \ldots, j_{n}} c_{j_{1}, \ldots j_{n}}\binom{j_{1}}{i_{1}} \ldots\binom{j_{n}}{i_{n}} x_{1}^{j_{1}-i_{1}} \ldots x_{n}^{j_{n}-i_{n}}
$$

For a prime p, \tilde{f} denotes the $\bmod p$ reduction of f. Let $\zeta \in(\mathbb{Z} /\langle p\rangle)^{n}$ be a root of \tilde{f}. We say that ζ is of multiplicity m if $m \geq 1$ is the largest integer such that $D^{i_{1} \ldots i_{n}} f(\zeta)=0 \bmod$ p for all $i_{1}+\ldots+i_{n}<m$. We call ζ a nondegenerate root of \tilde{f} if $m=1$, and call it a degenerate root otherwise. As an observation, it is immediate by definition that $m<\max _{i} d_{i}$

Definition 1.2. Let $f(x) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and fix a prime p. Let ord ${ }_{p}: \mathbb{Z} \rightarrow \mathbb{N} \cup\{0\}$ denote the usual p-adic valuation with $\operatorname{ord}_{p}(p)=1$. Then for any degenerate root $\zeta_{0} \in\left(\mathbb{F}_{p}\right)^{n}$ of \tilde{f} we define $s\left(f, \zeta_{0}\right):=\operatorname{ord}_{p}\left(f\left(\zeta_{0}+p x\right)\right)$, the largest power of p dividing $f\left(\zeta_{0}+p x\right)$. Next, we inductively define a set $T_{p, k}(f)$ of pairs $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ as follows: Set $\left(f_{0,0}, k_{0,0}\right):=(f, k)$. For $i \geq 1$ with $\left(f_{i-1, \mu}, k_{i-1, \mu}\right) \in T_{p, k}(f)$ and any degenerate root $\zeta_{i-1} \in(\mathbb{Z} /\langle p\rangle)^{n}$ of $\tilde{f}_{i-1, \mu}$

[^0]with $s_{i-1}:=s\left(f_{i-1, \mu}, \zeta_{i-1}\right) \in\left\{2, \ldots, k_{i-1, \mu}\right\} . \zeta=\mu+p^{i-1} \zeta_{i-1} k_{i, \zeta}=k_{i-1, \mu}-s_{i-1} f_{i, \zeta}(x):=$ $\left[\frac{1}{p^{s_{i-1}}} f_{i-1, \mu}\left(\zeta_{i-1}+p x\right)\right] \bmod p^{k_{i, \zeta}}$

The elements of the set $T_{p, k}(f)$ can be associated with the nodes of a finite, rooted directed tree which will assist us in performing our complexity analysis. Next, we prove the following multivariate-version of Hensel's lemma.

Lemma 1.3. Let $f(x) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. If $f\left(\zeta_{0}\right)=0 \bmod p^{j}$ for some $j \geq 1$ and $\zeta_{0} \bmod$ p is a nondegenerate root of \tilde{f}, then there are exactly p^{n-1} many $t \in(\mathbb{Z} /\langle p\rangle)^{n}$ such that $f\left(\zeta_{0}+p t\right)=0 \bmod p^{j+1}$.

Proof. Consider the taylor expansion of f at ζ_{0} by $p^{j} x$,

$$
\begin{gathered}
f\left(\zeta_{0}+p^{j} x\right)=f\left(\zeta_{0}\right)+p^{j}\left(\frac{\partial f}{\partial x_{1}}\left(\zeta_{0}\right)+\ldots \frac{\partial f}{\partial x_{n}}\left(\zeta_{0}\right)\right)+\sum_{i_{1}+\ldots+i+n \geq 2} p^{j\left(i_{1}+\ldots+i_{n}\right)} D^{i_{1} \ldots i_{n}} f\left(\zeta_{0}\right) x_{1}^{i_{1}} \ldots x_{n}^{i_{n}} \\
=f\left(\zeta_{0}\right)+p^{j}\left(\frac{\partial f}{\partial x_{1}}\left(\zeta_{0}\right)+\ldots \frac{\partial f}{\partial x_{n}}\left(\zeta_{0}\right)\right) \bmod p^{j+1}
\end{gathered}
$$

as $j\left(i_{1}+\ldots+i_{n}\right) \geq j+1$ for all $i_{1}+\ldots+i_{n} \geq 2$. Then $t:=\left(t_{1}, \ldots t_{n}\right)$ is such that $\left(\zeta_{0}+t p^{j}\right)$ is a root of $f \bmod p^{j+1}$ if and only if

$$
\begin{equation*}
\frac{\partial f}{\partial x_{1}}\left(\zeta_{0}\right) t_{1}+\ldots+\frac{\partial f}{\partial x_{n}}\left(\zeta_{0}\right) t_{n}=\frac{-f\left(\zeta_{0}\right)}{p^{j}} \bmod p \tag{1}
\end{equation*}
$$

As $\zeta_{0} \bmod p$ is a non-degenerate root of \tilde{f}, then there exists an i such that $\frac{\partial f}{\partial x_{i}} \neq 0 \bmod$ p. The left hand side of (1) does not vanish identically, and thus defines a nontrivial linear relation in $(\mathbb{Z} /\langle p\rangle)^{n}$. Fixing ζ_{0}, there are exactly p^{n-1} many $t \in(\mathbb{Z} /\langle p\rangle)^{n}$ satisfying (1).
For any root ζ_{0} of $f \bmod p^{j}$ and $k \geq j$ we call $\zeta \in\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)^{n}$ a lift of ζ_{0}, if $f(\zeta)=0 \bmod p^{k}$ and $\zeta_{0}=\zeta \bmod p^{j}$. By inductively applying Lemma 1.3 we can obtain:

Proposition 1.4. Let $f(x) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, and $k \geq j \geq 1$. If $f\left(\zeta_{0}\right)=0 \bmod p^{j}$ and $\zeta_{0} \bmod$ p is a non-degenerate root of \tilde{f}, then ζ_{0} lifts to exactly $p^{(n-1)(k-j)}$ roots of $f \bmod p^{k}$.

Lemma 1.5. Following the notations above, suppose that $\zeta_{0} \in(\mathbb{Z} /\langle p\rangle)^{n}$ is a root of \tilde{f} of finite multiplicity $m \geq 2$ and that there is a $\zeta \in\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)^{n}$ with $\zeta_{0}=\zeta \bmod p$ and $f(\zeta)=0$ $\bmod p^{k}$. Then $s\left(f, \zeta_{0}\right) \in 2, \ldots m$.

Proof. Since ζ_{0} is a degenerate root of $\tilde{f}, \frac{\partial f}{\partial x_{i}}\left(\zeta_{0}\right)=0 \bmod p$ for every $i \in 1 \ldots n$. Then for $\zeta=\zeta_{0}+p \sigma \in\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)^{n}$ with $\sigma:=\left(\sigma_{1}, \ldots \sigma_{n}\right)$,

$$
\begin{equation*}
f(\zeta)=f\left(\zeta_{0}\right)+p\left(\frac{\partial f}{\partial x_{1}}\left(\zeta_{0}\right) \sigma_{1}+\ldots+\frac{\partial f}{\partial x_{n}}\left(\zeta_{0}\right) \sigma_{n}\right)+\sum_{i_{1}+\ldots+i+n \geq 2} p^{i_{1}+\ldots+i_{n}} D^{i_{1} \ldots i_{n}} f\left(\zeta_{0}\right) \sigma_{1}^{i_{1}} \ldots \sigma_{n}^{i_{n}} \tag{2}
\end{equation*}
$$

to have solutions $\bmod p^{k}$ we need $f\left(\zeta_{0}\right)=0 \bmod p^{2}$, as the second and the third summand in equation (2) has order at least 2. Now, as ζ_{0} is a degenerate root of multiplicity m, there exists and m-th Hasse derivative: $j_{1}+\ldots+j_{n}=m$, and $D^{j_{1} \ldots j_{n}} f\left(\zeta_{0}\right) \neq 0 \bmod p$. So $s\left(f, \zeta_{0}\right) \leq \operatorname{ord}_{p}\left(p^{j_{1}+\ldots+j_{n}} D^{j_{1} \ldots j_{n}}\right)=m$.

2. Algorithm

We will now introduce a recurrence relation on f which counts the number of roots of f over $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)^{n}$.
Lemma 2.1. Let $n_{p}(f)$ denote the number of non-degenerate roots of \tilde{f} over $\mathbb{Z} /\langle p\rangle$. Then, provided $k \geq 2$ and \tilde{f} is not identically zero $\bmod p$, we have

$$
N_{p, k}(f)=p^{(k-1)(n-1)} n_{p}(f)+\left(\sum_{\substack{\zeta_{0} \in\left(\mathbb{F}_{p}\right)^{n} \\ s\left(f, \zeta_{0}\right) \geq k}} p^{n(k-1)}\right)+\sum_{\substack{\zeta_{0} \in\left(\mathbb{F}_{F^{\prime}}\right)^{n} \\ s\left(f, \zeta_{0}\right) \in\{2, \ldots, k-1\}}} p^{n\left(s\left(f, \zeta_{0}\right)-1\right)} N_{p, k-s\left(f, \zeta_{0}\right)}\left(f_{1, \zeta_{0}}\right)
$$

Proof. The lifting of the non-degenerate roots of \tilde{f} follows from Proposition 1.4. Now assume that $\zeta_{0} \in(\mathbb{Z} /\langle p\rangle)^{n}$ is a degenerate root of \tilde{f}. Write $\zeta=\zeta_{0}+p \sigma$ for $\sigma:=\zeta_{1}+p \zeta_{2}+$ $\ldots+p^{k-2} \zeta_{k-1} \in(\mathbb{Z} /\langle p\rangle)^{n}$, and let $s:=s\left(f, \zeta_{0}\right)$. Note that by Lemma $1.5, s \geq 2$. Then by definition, $f(\zeta)=p^{s} f_{1, \zeta_{0}}(\sigma)=0 \bmod p^{k}$ regardless of choice of σ. So there are exactly $p^{n(k-1)}$ values of $\zeta \in\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)^{n}$ such that $\zeta_{0}=\zeta \bmod p$ and $f(\zeta)=0 \bmod p^{k}$. If $s \leq k-1$, then ζ is a root of f if and only if

$$
\begin{equation*}
f_{1, \zeta_{0}}(\sigma)=0 \bmod p^{k-s} \tag{3}
\end{equation*}
$$

But then $\sigma=\zeta_{1}+p \zeta_{2}+\ldots+p^{k-s-1} \zeta_{k-s} \bmod p^{k-s}$, i.e the rest of the base p digits $\zeta_{k-s-+1}, \ldots, \zeta_{k-1}$ do not appear in equation (3). So the number of possible lifts ζ of ζ_{0} is exactly $p^{n(s-1)}$ times the number of roots $\left(\zeta_{1}+p \zeta_{2}+\ldots+p^{k-s-1} \zeta_{k-s}\right) \in\left(\mathbb{Z} /\left\langle p^{k-s}\right\rangle\right)^{n}$ of $f_{1, \zeta_{0}}$. This accounts for the third summand in our formula.

Below is a pseudo-code implementation of our algorithm. f is the polynomial whose roots we are counting, p is a prime number, k is a natural number, and n is the number of variables in f.

```
Algorithm 1 Count the number of roots of f over \(\mathbb{Z} /\left\langle p^{k}\right\rangle\)
    countpkMult(f,p,k,n)
    stack \(\leftarrow\) roots of f over \(\mathbb{F}_{p}\)
    while stack is not empty do
        \(\mathrm{z} \leftarrow\) stack. pop
        \(\mathrm{g} \leftarrow f(z+p x)\)
        \(\mathrm{s} \leftarrow s(f, z)\)
        if \(\mathrm{s}=1\) and z is not degenerate then
            count \(\leftarrow\) count \(+p^{(n-1)(k-1)}\)
        else if \(\mathrm{s} \geq \mathrm{k}\) then
            count \(\leftarrow\) count \(+p^{n(k-1)}\)
        else if \(\mathrm{s} \neq 0\) then
        newf \(\leftarrow \mathrm{g} / p^{s}\)
        count \(\leftarrow\) count \(+p^{n(s-1)}\) countpkMult(newf,p,k-s,n)
    end if
    end while
    return count
```

In order to count the roots of \tilde{f} over $(\mathbb{Z} /\langle p\rangle)^{n}$ we perform a brute force search over $(\mathbb{Z} /\langle p\rangle)^{n}$. In the next section we will determine a bound for the number of times that we will have to search over $(\mathbb{Z} /\langle p\rangle)^{n}$ which will lead to the complexity stated in theorem 1.1.

3. Complexity

In order to prove the complexity given in Theorem 1.1, we introduce a tree structure on $T_{p, k}(f)$.
Definition 3.1. We can identify the elements of $T_{p, k}(f)$ with the nodes of a labled rooted directed tree $\mathcal{T}_{p, k}(f)$ defined inductively as follows:
(1) We set $f_{0,0}:=f, k_{0,0}:=k$ and let $\left(f_{0,0}, k_{0,0}\right)$ be the label of the root node of $\mathcal{T}_{p, k}(f)$
(2) The non-root nodes of $\mathcal{T}_{p, k}(f)$ are uniquely labelled by each $\left(f_{i, \zeta}, k_{i, \zeta}\right) \in T_{p, k}(f)$ with $i \geq 1$
(3) There is ans edge from the node $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ to the node $\left(f_{j, \mu}, k_{j, \mu}\right)$ if and only if $i=j-1$ and there is a degenerate root $\zeta_{i} \in(\mathbb{Z} /\langle p\rangle)^{n}$ of $\tilde{f}_{i, \zeta}$ with $s\left(f_{i, \zeta}, \zeta_{i} \in 2, \ldots, k-1\right)$ and $\mu=\zeta+p^{j} \zeta_{i} \in\left(\mathbb{Z} /\left\langle p^{i}\right\rangle\right)^{n}$
(4) The label of a directed edge from node $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ to node $\left(f_{j, \mu}, k_{j, \mu}\right)$ is $p^{s\left(f_{i, \zeta},(\mu-\zeta) / p^{i}\right)-1}$ The edges of the tree are labled by powers of p in the set p^{1}, \ldots, p^{k-2} and the labels of the nodes lie in $\mathbb{Z}[x] \times \mathbb{N}$
For any root ζ of \tilde{f}, let $m(\zeta)$ denote its multiplicity as previously defined.
Lemma 3.2. (Schwartz-Zippel Lemma with Multiplicity). Fix a prime p and let $n \geq 1$, $d \geq 0$. Suppose \tilde{f} has degree at most d. if \tilde{f} does not vanish entirely, then we have

$$
\zeta \in \underset{\Sigma}{(\mathbb{Z} /\langle p\rangle)^{n} m(\zeta) \leq d p^{n-1}}
$$

This enhanced version of the Schwartz-Zippel Lemma can be proved by induction. The complete proof can be found in [2] and [3].

Lemma 3.3. Following the notation in definition 3.1 we claim that the following statements are true:
(1) The depth of $\mathcal{T}_{p, k}(f)$ is at most $\left\lfloor\frac{k-1}{2}\right\rfloor$.
(2) The degree of the root node of $\mathcal{T}_{p, k}(f)$ is at most $\left\lfloor\frac{d p^{n-1}}{2}\right\rfloor$
(3) The degree of any non-root node of $\mathcal{T}_{p, k}(f)$ labelled $\left(f_{j, \mu}, k_{j, \mu}\right)$ with parent $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ and $\zeta_{i}:=(\mu-\zeta) / p^{i}$, is at most $\left\lfloor s\left(f_{i, \zeta}, \zeta_{i}\right) p^{n-1} / 2\right\rfloor$. In particular, deg $\tilde{f}_{i, \zeta} \leq s\left(f_{i, \zeta}, \zeta_{i}\right) \leq$ $k_{i, \zeta}-1 \leq k$ and $\sum_{\substack{\text { children of } \\\left(f_{i, \zeta}, k_{i, \zeta}\right)}} s\left(\left(f_{i, \zeta}, \zeta_{i}\right) \leq \operatorname{deg} \tilde{f}_{i, \zeta} p^{n-1}\right.$
(4) $\mathcal{T}_{p, k}(f)$ has at most $\left\lfloor\frac{d p^{n-1}}{2}\right\rfloor$ nodes at depth $i \geq 1$ and thus a total of no more than $\left\lfloor\frac{d p^{n-1}}{2}\right\rfloor\left\lfloor\frac{k-1}{2}\right\rfloor+1$ nodes.
Proof. Assertion (1): By definitions 1.2 and 3.1, each $\left(f_{j, \mu}, k_{j, \mu}\right)$ whose parent node is $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ must satisfy $2 \leq k_{i, \zeta}-k_{j, \mu} \leq k_{i, \zeta}-1$, and $1 \leq k_{j, \mu} \leq k-2$ for all $i \geq 1$. So, considering any root to leaf path in $\mathcal{T}_{p, k}(f)$, it is clear that the depth of $\mathcal{T}_{p, k}(f)$ can be no greater than $1+\lfloor(k-2-1) / 2\rfloor=\left\lfloor\frac{k-1}{2}\right\rfloor$.

Assertion (2): Since the multiplicity of any degenerate root of \tilde{f} is at least two, by Lemma 3.2 , the number of degenerate roots that \tilde{f} can have is bounded above by $\left\lfloor d p^{n-1}\right\rfloor$. Every edge leaving the root node of $\mathcal{T}_{p, k}(f)$ corresponds uniquely to a degenerate root ζ_{0} of \tilde{f} with $s\left(f, \zeta_{0}\right) \in\{2, \ldots, k\}$. Therefore the root can have at most degree $\left\lfloor d p^{n-1}\right\rfloor$.
Assertion (3): Let $s:=\left(f_{i, \zeta}, \zeta_{i}\right)$, then the degree greater than s part of the Taylor expansion $f_{i, \zeta}\left(\zeta_{0}+p x\right)$:

$$
\sum_{i_{1}+\ldots+i_{n}>s} p^{i_{1}+\ldots+i_{n}} D^{i_{1} \ldots i_{n}} f_{i, \zeta}\left(\zeta_{0}\right) x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}
$$

has valuation greater then s. In other words, the coefficients of all the x^{i} terms with $|i| \geq s+1$, must be divisible by p. Thus $\operatorname{deg} f_{i, \zeta} \tilde{\leq} s$. The inequality $s \leq k_{i, \zeta}-1 \leq k-1$ follows directly from the definition. As in Lemma 1.5, each $s\left(f_{i, \zeta}, \zeta_{i}\right)$ is at most the multiplicity of of the root ζ_{i} of $\tilde{f}_{i, \zeta}$, the final bound is obvious by again applying Lemma 7 .
Assertion (4): This is immediate from Assertion (1) and Assertion (3).
At each node of $\mathcal{T}_{p, k}(f)$ we perform a brute force search for roots of a polynomial over $(\mathbb{Z} /\langle p\rangle)^{n}$ which dominates the complexity of our algorithm. Each search takes time $O\left(p^{n}\right)$ and number of searches we do is bounded above by $\left\lfloor\frac{d p^{n-1}}{2}\right\rfloor\left\lfloor\frac{k-1}{2}\right\rfloor+1$ which gives our algorithm a complexity of $O\left(d k p^{2 n}\right)$.

4. Acknowledgements

I would like to thank Dr. Maurice Rojas for his constant support and guidance throughout my involvement in this project. I would also like to thank Joan Coronado for helping me clear several hurdles when I first began working on the project.

References

[1] Leann Kopp; Natalie Randall; J. Maurice Rojas; and Yuyu Zhu, "Randomized PolynomialTime Root Counting in Prime Power Rings," Mathematics of Computation, to appear. DOI: https://doi.org/10.1090/mcom/3431
[2] Zeev Dvir; Swastik Kopparty; Shubhangi Saraf; and Madhu Sudan, "Extensions to the Method of Multiplicities, with applications to Kakeya Sets and Mergers," SIAM Journal on Computing, vol. 42, no. 6, pp. 2305-2328.
[3] Terrance Tao, "Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory," EMS Surveys in Mathematical Sciences 1.1 (2014): 1-46.
[4] David Harvey, "Computing zeta functions of arithmetic schemes," Proceedings of the London Mathematical Society, Volume 111, Issue 6, December 2015, Pages 1379-1401

E-mail address: carobel1@umbc.edu
Department of Mathematics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250

E-mail address: rojas@math.tamu.edu
Department of Mathematics, Texas A\&M University, TAMU 3368, College Station, TX 77843-3368

E-mail address: zhuyuyu@math.tamu.edu
Department of Mathematics, Texas A\&M University, TAMU 3368, College Station, TX 77843-3368

[^0]: Partially supported by NSF REU grant DMS-1757872.
 Partially supported by NSF grants CCF-1900881 and DMS-1757872.
 Partially supported by NSF grant CCF-1900881.

