Counting Points on Arbitrary Curves over Prime Power Rings

Caleb Robelle

Texas A\&M University

July 23, 2019

Overview

(1) Introduction
(2) Algorithm
(3) Examples

Finite Fields, and Prime Power Rings

- Finite fields
- $\mathbb{F}_{p}=\mathbb{Z} /\langle p\rangle=\{0,1,2,3, \ldots, p-1\}$

Finite Fields, and Prime Power Rings

- Finite fields

$$
\text { - } \mathbb{F}_{p}=\mathbb{Z} /\langle p\rangle=\{0,1,2,3, \ldots, p-1\}
$$

- Prime Power Rings
- $\mathbb{Z} /\left\langle p^{k}\right\rangle=\left\{0,1,2,3, \ldots p^{k}-1\right\}$

Finite Fields, and Prime Power Rings

- Finite fields

$$
\text { - } \mathbb{F}_{p}=\mathbb{Z} /\langle p\rangle=\{0,1,2,3, \ldots, p-1\}
$$

- Prime Power Rings
- $\mathbb{Z} /\left\langle p^{k}\right\rangle=\left\{0,1,2,3, \ldots p^{k}-1\right\}$
+ and \cdot over $\mathbb{Z} /\langle n\rangle$
Let a and $\mathrm{b} \in \mathbb{Z} /\langle n\rangle$

Finite Fields, and Prime Power Rings

- Finite fields

$$
\text { - } \mathbb{F}_{p}=\mathbb{Z} /\langle p\rangle=\{0,1,2,3, \ldots, p-1\}
$$

- Prime Power Rings
- $\mathbb{Z} /\left\langle p^{k}\right\rangle=\left\{0,1,2,3, \ldots p^{k}-1\right\}$
+ and \cdot over $\mathbb{Z} /\langle n\rangle$
Let a and $\mathrm{b} \in \mathbb{Z} /\langle n\rangle$
- $a+b:=a+b \bmod n$

Finite Fields, and Prime Power Rings

- Finite fields

$$
\text { - } \mathbb{F}_{p}=\mathbb{Z} /\langle p\rangle=\{0,1,2,3, \ldots, p-1\}
$$

- Prime Power Rings
- $\mathbb{Z} /\left\langle p^{k}\right\rangle=\left\{0,1,2,3, \ldots p^{k}-1\right\}$
+ and \cdot over $\mathbb{Z} /\langle n\rangle$
Let a and $\mathrm{b} \in \mathbb{Z} /\langle n\rangle$
- $a+b:=a+b \bmod n$
- $a \cdot b:=a \cdot b \bmod n$

Hensel's Lemma

For $f \in \mathbb{Z}[x]$ let $\tilde{f}:=f \bmod \mathrm{p}$

- $\zeta \in \mathbb{F}_{p}$ is a degenerate root of \tilde{f} if $\tilde{f}^{\prime}(\zeta)=0$

Hensel's Lemma

For $f \in \mathbb{Z}[x]$ let $\tilde{f}:=f \bmod p$

- $\zeta \in \mathbb{F}_{p}$ is a degenerate root of \tilde{f} if $\tilde{f}^{\prime}(\zeta)=0$

Lemma

Suppose $k \in \mathbb{N}, f \in \mathbb{Z}[x]$ is not identically zero in $(\mathbb{Z} /\langle p\rangle)[x]$, and $\zeta_{0} \in \mathbb{Z} /\langle p\rangle$ is a non-degenerate root of $\tilde{f}:=f \bmod p$. Then there is a unique $\zeta \in \mathbb{Z} /\left\langle p^{k}\right\rangle$ with $\zeta_{0}=\zeta \bmod p$, and $f(\zeta)=0 \bmod p^{k}$.

Hensel's Lemma

For $f \in \mathbb{Z}[x]$ let $\tilde{f}:=f \bmod p$

- $\zeta \in \mathbb{F}_{p}$ is a degenerate root of \tilde{f} if $\tilde{f}^{\prime}(\zeta)=0$

Lemma

Suppose $k \in \mathbb{N}, f \in \mathbb{Z}[x]$ is not identically zero in $(\mathbb{Z} /\langle p\rangle)[x]$, and $\zeta_{0} \in \mathbb{Z} /\langle p\rangle$ is a non-degenerate root of $\tilde{f}:=f \bmod p$. Then there is a unique $\zeta \in \mathbb{Z} /\left\langle p^{k}\right\rangle$ with $\zeta_{0}=\zeta \bmod p$, and $f(\zeta)=0 \bmod p^{k}$.

Example

Consider $f(x)=7 x^{2}+3 x+6$ over $\mathbb{Z} /\left\langle 2^{15}\right\rangle$

Hensel's Lemma

For $f \in \mathbb{Z}[x]$ let $\tilde{f}:=f \bmod p$

- $\zeta \in \mathbb{F}_{p}$ is a degenerate root of \tilde{f} if $\tilde{f}^{\prime}(\zeta)=0$

Lemma

Suppose $k \in \mathbb{N}, f \in \mathbb{Z}[x]$ is not identically zero in $(\mathbb{Z} /\langle p\rangle)[x]$, and $\zeta_{0} \in \mathbb{Z} /\langle p\rangle$ is a non-degenerate root of $\tilde{f}:=f \bmod p$. Then there is a unique $\zeta \in \mathbb{Z} /\left\langle p^{k}\right\rangle$ with $\zeta_{0}=\zeta \bmod p$, and $f(\zeta)=0 \bmod p^{k}$.

Example

Consider $f(x)=7 x^{2}+3 x+6$ over $\mathbb{Z} /\left\langle 2^{15}\right\rangle$

- $\tilde{f}(x)=x^{2}+x$

Hensel's Lemma

For $f \in \mathbb{Z}[x]$ let $\tilde{f}:=f \bmod p$

- $\zeta \in \mathbb{F}_{p}$ is a degenerate root of \tilde{f} if $\tilde{f}^{\prime}(\zeta)=0$

Lemma

Suppose $k \in \mathbb{N}, f \in \mathbb{Z}[x]$ is not identically zero in $(\mathbb{Z} /\langle p\rangle)[x]$, and $\zeta_{0} \in \mathbb{Z} /\langle p\rangle$ is a non-degenerate root of $\tilde{f}:=f \bmod p$. Then there is a unique $\zeta \in \mathbb{Z} /\left\langle p^{k}\right\rangle$ with $\zeta_{0}=\zeta \bmod p$, and $f(\zeta)=0 \bmod p^{k}$.

Example

Consider $f(x)=7 x^{2}+3 x+6$ over $\mathbb{Z} /\left\langle 2^{15}\right\rangle$

- $\tilde{f}(x)=x^{2}+x$
- $\tilde{f}(1)=\tilde{f}(0)=0 \bmod 2$

Hensel's Lemma

For $f \in \mathbb{Z}[x]$ let $\tilde{f}:=f \bmod p$

- $\zeta \in \mathbb{F}_{p}$ is a degenerate root of \tilde{f} if $\tilde{f}^{\prime}(\zeta)=0$

Lemma

Suppose $k \in \mathbb{N}, f \in \mathbb{Z}[x]$ is not identically zero in $(\mathbb{Z} /\langle p\rangle)[x]$, and $\zeta_{0} \in \mathbb{Z} /\langle p\rangle$ is a non-degenerate root of $\tilde{f}:=f \bmod p$. Then there is a unique $\zeta \in \mathbb{Z} /\left\langle p^{k}\right\rangle$ with $\zeta_{0}=\zeta \bmod p$, and $f(\zeta)=0 \bmod p^{k}$.

Example

Consider $f(x)=7 x^{2}+3 x+6$ over $\mathbb{Z} /\left\langle 2^{15}\right\rangle$

- $\tilde{f}(x)=x^{2}+x$
- $\tilde{f}(1)=\tilde{f}(0)=0 \bmod 2$
- $f(6641)=f(7402)=0 \bmod 2^{15}$

Multivariate Hensel's Lemma

For $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ let $\tilde{f}:=f \bmod p$

- $\zeta \in\left(\mathbb{F}_{p}\right)^{n}$ is a degenerate root of \tilde{f} iff $\frac{\partial \tilde{f}}{\partial x_{i}}(\zeta)=0$ for all i

Multivariate Hensel's Lemma

For $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ let $\tilde{f}:=f \bmod p$

- $\zeta \in\left(\mathbb{F}_{p}\right)^{n}$ is a degenerate root of \tilde{f} iff $\frac{\partial \tilde{f}}{\partial x_{i}}(\zeta)=0$ for all i

Hensel's Lemma

Let $f(x) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. If $f\left(\zeta_{0}\right) \equiv 0 \bmod p^{j}$ for $j \geq 1$, and $\left(\zeta_{0} \bmod p\right)$ is a non-degenerate root of \tilde{f}, then there are exactly p^{n-1} many $t \in(\mathbb{Z} /\langle p\rangle)^{n}$ such that $f\left(\zeta_{0}+t p^{j}\right) \equiv 0 \bmod p^{j+1}$.

Multivariate Hensel's Lemma

For $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ let $\tilde{f}:=f \bmod \mathrm{p}$

- $\zeta \in\left(\mathbb{F}_{p}\right)^{n}$ is a degenerate root of \tilde{f} iff $\frac{\partial \tilde{f}}{\partial x_{i}}(\zeta)=0$ for all i

Hensel's Lemma

Let $f(x) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. If $f\left(\zeta_{0}\right) \equiv 0 \bmod p^{j}$ for $j \geq 1$, and $\left(\zeta_{0} \bmod p\right)$ is a non-degenerate root of \tilde{f}, then there are exactly p^{n-1} many $t \in(\mathbb{Z} /\langle p\rangle)^{n}$ such that $f\left(\zeta_{0}+t p^{j}\right) \equiv 0 \bmod p^{j+1}$.

Proposition

Let $f(x) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. If $f\left(\zeta_{0}\right) \equiv 0 \bmod p^{j}$ for $j \geq 1$, and $\left(\zeta_{0} \bmod p\right)$ is a non-degenerate root of \tilde{f}, then ζ_{0} lifts to exactly $p^{(n-1)(k-j)}$ roots of f over $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)^{n}$.

Hensel Lifting Example

- Consider $f=13 x+10 y+z$ over $\left(\mathbb{Z} /\left\langle 3^{4}\right\rangle\right)^{3}$.

Hensel Lifting Example

- Consider $f=13 x+10 y+z$ over $\left(\mathbb{Z} /\left\langle 3^{4}\right\rangle\right)^{3}$.
- $\tilde{f}=x+y+z$ has 9 non-degenerate roots over $(\mathbb{Z} /\langle 3\rangle)^{3}$
- $(0,0,0),(1,1,1),(2,2,2)$, and all permutations of $(0,1,2)$

Hensel Lifting Example

- Consider $f=13 x+10 y+z$ over $\left(\mathbb{Z} /\left\langle 3^{4}\right\rangle\right)^{3}$.
- $\tilde{f}=x+y+z$ has 9 non-degenerate roots over $(\mathbb{Z} /\langle 3\rangle)^{3}$
- $(0,0,0),(1,1,1),(2,2,2)$, and all permutations of $(0,1,2)$
- Each lifts to $p^{(n-1)(k-j)}$ roots
- $p=3, n=3, k=4, j=1$

Hensel Lifting Example

- Consider $f=13 x+10 y+z$ over $\left(\mathbb{Z} /\left\langle 3^{4}\right\rangle\right)^{3}$.
- $\tilde{f}=x+y+z$ has 9 non-degenerate roots over $(\mathbb{Z} /\langle 3\rangle)^{3}$
- $(0,0,0),(1,1,1),(2,2,2)$, and all permutations of $(0,1,2)$
- Each lifts to $p^{(n-1)(k-j)}$ roots
- $p=3, n=3, k=4, j=1$
- f has $9 \cdot 3^{(3-1)(4-1)}=6561$ roots over $\left(\mathbb{Z} /\left\langle 3^{4}\right\rangle\right)^{3}$

Lifting Degenerate Roots

- Let $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$

Lifting Degenerate Roots

- Let $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
- For any degenerate root $\zeta_{0} \in\left(\mathbb{F}_{p}\right)^{n}$ of \tilde{f} define $s\left(f, \zeta_{0}\right):=\operatorname{ord}_{p}\left(f\left(\zeta_{0}+p x\right)\right)$

Lifting Degenerate Roots

- Let $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
- For any degenerate root $\zeta_{0} \in\left(\mathbb{F}_{p}\right)^{n}$ of \tilde{f} define $s\left(f, \zeta_{0}\right):=\operatorname{ord}_{p}\left(f\left(\zeta_{0}+p x\right)\right)$
- Inductively define a set $T_{p, k}(f)$ of pairs $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ as follows:

Lifting Degenerate Roots

- Let $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
- For any degenerate root $\zeta_{0} \in\left(\mathbb{F}_{p}\right)^{n}$ of \tilde{f} define $s\left(f, \zeta_{0}\right):=\operatorname{ord}_{p}\left(f\left(\zeta_{0}+p x\right)\right)$
- Inductively define a set $T_{p, k}(f)$ of pairs $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ as follows:
- Set $\left(f_{0,0}, k_{0,0}\right):=(f, k)$.

Lifting Degenerate Roots

- Let $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
- For any degenerate root $\zeta_{0} \in\left(\mathbb{F}_{p}\right)^{n}$ of \tilde{f} define $s\left(f, \zeta_{0}\right):=\operatorname{ord}_{p}\left(f\left(\zeta_{0}+p x\right)\right)$
- Inductively define a set $T_{p, k}(f)$ of pairs $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ as follows:
- Set $\left(f_{0,0}, k_{0,0}\right):=(f, k)$.
- For $i \geq 1$ with $\left(f_{i-1, \mu}, k_{i-1, \mu}\right) \in T_{p, k}(f)$ and any degenerate root $\zeta_{i-1} \in(\mathbb{Z} /\langle p\rangle)^{n}$ of $\tilde{f}_{i-1, \mu}$ with $s_{i-1}:=s\left(f_{i-1, \mu}, \zeta_{i-1}\right) \in\left\{2, \ldots, k_{i-1, \mu}\right\}$

Lifting Degenerate Roots

- Let $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
- For any degenerate root $\zeta_{0} \in\left(\mathbb{F}_{p}\right)^{n}$ of \tilde{f} define $s\left(f, \zeta_{0}\right):=\operatorname{ord}_{p}\left(f\left(\zeta_{0}+p x\right)\right)$
- Inductively define a set $T_{p, k}(f)$ of pairs $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ as follows:
- Set $\left(f_{0,0}, k_{0,0}\right):=(f, k)$.
- For $i \geq 1$ with $\left(f_{i-1, \mu}, k_{i-1, \mu}\right) \in T_{p, k}(f)$ and any degenerate root

$$
\begin{aligned}
& \zeta_{i-1} \in(\mathbb{Z} /\langle p\rangle)^{n} \text { of } \tilde{f}_{i-1, \mu} \text { with } s_{i-1}:=s\left(f_{i-1, \mu}, \zeta_{i-1}\right) \in\left\{2, \ldots, k_{i-1, \mu}\right\} \\
& \bullet \bullet \zeta=\mu+p^{i-1} \zeta_{i-1}
\end{aligned}
$$

Lifting Degenerate Roots

- Let $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
- For any degenerate root $\zeta_{0} \in\left(\mathbb{F}_{p}\right)^{n}$ of \tilde{f} define $s\left(f, \zeta_{0}\right):=\operatorname{ord}_{p}\left(f\left(\zeta_{0}+p x\right)\right)$
- Inductively define a set $T_{p, k}(f)$ of pairs $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ as follows:
- Set $\left(f_{0,0}, k_{0,0}\right):=(f, k)$.
- For $i \geq 1$ with $\left(f_{i-1, \mu}, k_{i-1, \mu}\right) \in T_{p, k}(f)$ and any degenerate root

$$
\begin{aligned}
\zeta_{i-1} & \in(\mathbb{Z} /\langle p\rangle)^{n} \text { of } \tilde{f}_{i-1, \mu} \text { with } s_{i-1}:=s\left(f_{i-1, \mu}, \zeta_{i-1}\right) \in\left\{2, \ldots, k_{i-1, \mu}\right\} \\
& \bullet \zeta=\mu+p^{i-1} \zeta_{i-1} \\
& \text { • } k_{i, \zeta}=k_{i-1, \mu}-s_{i-1}
\end{aligned}
$$

Lifting Degenerate Roots

- Let $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
- For any degenerate root $\zeta_{0} \in\left(\mathbb{F}_{p}\right)^{n}$ of \tilde{f} define $s\left(f, \zeta_{0}\right):=\operatorname{ord}_{p}\left(f\left(\zeta_{0}+p x\right)\right)$
- Inductively define a set $T_{p, k}(f)$ of pairs $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ as follows:
- Set $\left(f_{0,0}, k_{0,0}\right):=(f, k)$.
- For $i \geq 1$ with $\left(f_{i-1, \mu}, k_{i-1, \mu}\right) \in T_{p, k}(f)$ and any degenerate root

$$
\begin{aligned}
& \zeta_{i-1} \in(\mathbb{Z} /\langle p\rangle)^{n} \text { of } \tilde{f}_{i-1, \mu} \text { with } s_{i-1}:=s\left(f_{i-1, \mu}, \zeta_{i-1}\right) \in\left\{2, \ldots, k_{i-1, \mu}\right\} \\
& \quad \text { - } \zeta=\mu+p^{i-1} \zeta_{i-1} \\
& \text { - } k_{i, \zeta}=k_{i-1, \mu}-s_{i-1} \\
& \text { - } f_{i, \zeta}(x):=\left[\frac{1}{p^{s_{i-1}}} f_{i-1, \mu}\left(\zeta_{i-1}+p x\right)\right] \bmod p^{k_{i, \zeta}}
\end{aligned}
$$

Lifting Degenerate Roots

- We can associate the elements of $T_{p, k}(f)$ with a rooted directed tree

Lifting Degenerate Roots

- We can associate the elements of $T_{p, k}(f)$ with a rooted directed tree
- $\left(f_{0,0}, k_{0,0}\right)$ is the root node

Lifting Degenerate Roots

- We can associate the elements of $T_{p, k}(f)$ with a rooted directed tree
- $\left(f_{0,0}, k_{0,0}\right)$ is the root node
- The non-root nodes of the tree are uniquely labeled by each $\left(f_{i, \zeta}, k_{i, \zeta}\right) \in T_{p, k}(f)$ with $i \geq 1$

Lifting Degenerate Roots

- We can associate the elements of $T_{p, k}(f)$ with a rooted directed tree
- $\left(f_{0,0}, k_{0,0}\right)$ is the root node
- The non-root nodes of the tree are uniquely labeled by each $\left(f_{i, \zeta}, k_{i, \zeta}\right) \in T_{p, k}(f)$ with $i \geq 1$
- There is an edge from $\left(f_{j, \mu}, k_{j, \mu}\right)$ to $\left(f_{i, \zeta}, k_{i, \zeta}\right)$ if and only if $j=i-1$, and there is degenerate root ζ_{i-1} of $\tilde{\tilde{j}}_{j, \mu}$ with

$$
s\left(f_{j, \mu}, \zeta_{i-1}\right) \in\left\{2, \ldots, k_{i, \mu}-1\right\}, \text { and } \zeta=\mu+p^{i-1} \zeta_{i-1}
$$

Lifting Degenerate Roots

- Let ζ_{0} be a degenerate root of \tilde{f}

Lifting Degenerate Roots

- Let ζ_{0} be a degenerate root of \tilde{f}
- if $s\left(f, \zeta_{0}\right)=1$ or 0 then ζ_{0} does not lift

Lifting Degenerate Roots

- Let ζ_{0} be a degenerate root of \tilde{f}
- if $s\left(f, \zeta_{0}\right)=1$ or 0 then ζ_{0} does not lift
- if $s\left(f, \zeta_{0}\right) \geq k$ then ζ_{0} lifts to $p^{n(k-1)}$ roots

Lifting Degenerate Roots

- Let ζ_{0} be a degenerate root of \tilde{f}
- if $s\left(f, \zeta_{0}\right)=1$ or 0 then ζ_{0} does not lift
- if $s\left(f, \zeta_{0}\right) \geq k$ then ζ_{0} lifts to $p^{n(k-1)}$ roots
- if $s\left(f, \zeta_{0}\right) \in\{2, \ldots, k-1\}$ then ζ_{0} lifts to $p^{s\left(f_{0}, 0, \zeta_{0}\right)} N_{p, k-s\left(f_{0,0}, \zeta_{0}\right)}\left(f_{1, \zeta_{0}}\right)$ roots

Total Count

$$
\begin{aligned}
& N_{p, k}(f)=p^{(k-1)(n-1)} n_{p, k}(f)+\left(\sum_{\substack{c_{0} \in\left(\mathbb{F}^{\prime}\right)^{n} \\
s\left(f, \zeta_{0}\right) \geq k}} p^{n(k-1)}\right)+ \\
& \left(\sum_{\substack{s\left(f, \zeta_{0}\right) \in\{2, \ldots, k-1\}}} p^{\zeta_{0} \in\left(\mathbb{F}_{p}\right)^{n}} p^{n\left(s\left(f, \zeta_{0}\right)-1\right)} N_{p, k-s\left(f, \zeta_{0}\right)}\left(f_{\left.1, \zeta_{0}\right)}\right)\right.
\end{aligned}
$$

Counting Example 1

How many points does $f(x, y)=3 x^{2} y^{2}+14 x y^{2}+y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{4}\right\rangle\right)^{2}$?

Counting Example 1

How many points does $f(x, y)=3 x^{2} y^{2}+14 x y^{2}+y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{4}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=(x-1)^{2} y^{2}$

Counting Example 1

How many points does $f(x, y)=3 x^{2} y^{2}+14 x y^{2}+y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{4}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=(x-1)^{2} y^{2}$
- Roots: $\{(0,0),(1,0),(1,1)\}$

Counting Example 1

How many points does $f(x, y)=3 x^{2} y^{2}+14 x y^{2}+y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{4}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=(x-1)^{2} y^{2}$
- Roots: $\{(0,0),(1,0),(1,1)\}$
- $s(f,(0,0))=2, s(f,(1,0))=4, s(f,(1,1))=2$

Counting Example 1

How many points does $f(x, y)=3 x^{2} y^{2}+14 x y^{2}+y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{4}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=(x-1)^{2} y^{2}$
- Roots: $\{(0,0),(1,0),(1,1)\}$
- $s(f,(0,0))=2, s(f,(1,0))=4, s(f,(1,1))=2$
- $(1,0)$ lifts to $2^{2(4-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{4}\right\rangle\right)^{2}$

Counting Example 1

How many points does $f(x, y)=3 x^{2} y^{2}+14 x y^{2}+y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{4}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=(x-1)^{2} y^{2}$
- Roots: $\{(0,0),(1,0),(1,1)\}$
- $s(f,(0,0))=2, s(f,(1,0))=4, s(f,(1,1))=2$
- $(1,0)$ lifts to $2^{2(4-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{4}\right\rangle\right)^{2}$
- Construct nodes for $\zeta=(0,0)$ and $\mu=(1,1)$

Counting Example 1

How many points does $f(x, y)=3 x^{2} y^{2}+14 x y^{2}+y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{4}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=(x-1)^{2} y^{2}$
- Roots: $\{(0,0),(1,0),(1,1)\}$
- $s(f,(0,0))=2, s(f,(1,0))=4, s(f,(1,1))=2$
- $(1,0)$ lifts to $2^{2(4-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{4}\right\rangle\right)^{2}$
- Construct nodes for $\zeta=(0,0)$ and $\mu=(1,1)$

Counting Example 1 (cont)

$$
\left(f_{1, \zeta}, k_{1, \zeta}\right)=\left(x^{2}, 2\right)
$$

Counting Example 1 (cont)

$$
\begin{gathered}
\left(f_{1, \zeta}, k_{1, \zeta}\right)=\left(x^{2}, 2\right) \\
-\tilde{f}_{1, \zeta}=x^{2}
\end{gathered}
$$

Counting Example 1 (cont)

$\left(f_{1, \zeta}, k_{1, \zeta}\right)=\left(x^{2}, 2\right)$

- $\tilde{f}_{1, \zeta}=x^{2}$
- roots: $\{(0,0),(1,0)\}$

Counting Example 1 (cont)

$\left(f_{1, \zeta}, k_{1, \zeta}\right)=\left(x^{2}, 2\right)$

- $\tilde{f}_{1, \zeta}=x^{2}$
- roots: $\{(0,0),(1,0)\}$
- $s\left(f_{1, \zeta},(0,0)\right)=2$ and $s\left(f_{1, \zeta},(1,0)\right)=2$

Counting Example 1 (cont)

$\left(f_{1, \zeta}, k_{1, \zeta}\right)=\left(x^{2}, 2\right)$

- $\tilde{f}_{1, \zeta}=x^{2}$
- roots: $\{(0,0),(1,0)\}$
- $s\left(f_{1, \zeta},(0,0)\right)=2$ and $s\left(f_{1, \zeta},(1,0)\right)=2$
- Each root lifts to $2^{2(2-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$

Counting Example 1 (cont)

$\left(f_{1, \zeta}, k_{1, \zeta}\right)=\left(x^{2}, 2\right)$

- $\tilde{f}_{1, \zeta}=x^{2}$
- roots: $\{(0,0),(1,0)\}$
- $s\left(f_{1, \zeta},(0,0)\right)=2$ and $s\left(f_{1, \zeta},(1,0)\right)=2$
- Each root lifts to $2^{2(2-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$
$\left(f_{1, \mu}, k_{1, \mu}\right)=\left(y^{2}, 2\right)$

Counting Example 1 (cont)

$\left(f_{1, \zeta}, k_{1, \zeta}\right)=\left(x^{2}, 2\right)$

- $\tilde{f}_{1, \zeta}=x^{2}$
- roots: $\{(0,0),(1,0)\}$
- $s\left(f_{1, \zeta},(0,0)\right)=2$ and $s\left(f_{1, \zeta},(1,0)\right)=2$
- Each root lifts to $2^{2(2-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$
$\left(f_{1, \mu}, k_{1, \mu}\right)=\left(y^{2}, 2\right)$
- $\tilde{f}_{1, \mu}=y^{2}$

Counting Example 1 (cont)

$\left(f_{1, \zeta}, k_{1, \zeta}\right)=\left(x^{2}, 2\right)$

- $\tilde{f}_{1, \zeta}=x^{2}$
- roots: $\{(0,0),(1,0)\}$
- $s\left(f_{1, \zeta},(0,0)\right)=2$ and $s\left(f_{1, \zeta},(1,0)\right)=2$
- Each root lifts to $2^{2(2-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$
$\left(f_{1, \mu}, k_{1, \mu}\right)=\left(y^{2}, 2\right)$
- $\tilde{f}_{1, \mu}=y^{2}$
- roots: $\{(0,0),(0,1)\}$

Counting Example 1 (cont)

$\left(f_{1, \zeta}, k_{1, \zeta}\right)=\left(x^{2}, 2\right)$

- $\tilde{f}_{1, \zeta}=x^{2}$
- roots: $\{(0,0),(1,0)\}$
- $s\left(f_{1, \zeta},(0,0)\right)=2$ and $s\left(f_{1, \zeta},(1,0)\right)=2$
- Each root lifts to $2^{2(2-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$
$\left(f_{1, \mu}, k_{1, \mu}\right)=\left(y^{2}, 2\right)$
- $\tilde{f}_{1, \mu}=y^{2}$
- roots: $\{(0,0),(0,1)\}$
- $s\left(f_{1, \mu},(0,0)\right)=2$ and $s\left(f_{1, \mu},(0,1)\right)=2$

Counting Example 1 (cont)

$\left(f_{1, \zeta}, k_{1, \zeta}\right)=\left(x^{2}, 2\right)$

- $\tilde{f}_{1, \zeta}=x^{2}$
- roots: $\{(0,0),(1,0)\}$
- $s\left(f_{1, \zeta},(0,0)\right)=2$ and $s\left(f_{1, \zeta},(1,0)\right)=2$
- Each root lifts to $2^{2(2-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$
$\left(f_{1, \mu}, k_{1, \mu}\right)=\left(y^{2}, 2\right)$
- $\tilde{f}_{1, \mu}=y^{2}$
- roots: $\{(0,0),(0,1)\}$
- $s\left(f_{1, \mu},(0,0)\right)=2$ and $s\left(f_{1, \mu},(0,1)\right)=2$
- Each root lifts to $2^{2(2-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$

Counting Example 1 (cont)

- Left node has 8 roots
- Right node has 8 roots
- Total count $=64+2^{2}(8)+2^{2}(8)=128$ over $\left(\mathbb{Z} /\left\langle 2^{4}\right\rangle\right)^{2}$

Counting Example 2

How many points does $f(x, y)=7 x^{2}+13 y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$?

Counting Example 2

How many points does $f(x, y)=7 x^{2}+13 y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=x^{2}+y^{2}$

Counting Example 2

How many points does $f(x, y)=7 x^{2}+13 y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=x^{2}+y^{2}$
- Roots: $\{(0,0),(1,1)\}$

Counting Example 2

How many points does $f(x, y)=7 x^{2}+13 y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=x^{2}+y^{2}$
- Roots: $\{(0,0),(1,1)\}$
- $s(f,(0,0))=2$ and $s(f,(1,1))=1$

Counting Example 2

How many points does $f(x, y)=7 x^{2}+13 y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=x^{2}+y^{2}$
- Roots: $\{(0,0),(1,1)\}$
- $s(f,(0,0))=2$ and $s(f,(1,1))=1$
- $(0,0)$ lifts to $2^{2(2-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$

Counting Example 2

How many points does $f(x, y)=7 x^{2}+13 y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=x^{2}+y^{2}$
- Roots: $\{(0,0),(1,1)\}$
- $s(f,(0,0))=2$ and $s(f,(1,1))=1$
- $(0,0)$ lifts to $2^{2(2-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$
- $(1,1)$ lifts to none

Counting Example 2

How many points does $f(x, y)=7 x^{2}+13 y^{2}$ have over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$?

- $\tilde{f}(x, y)=x^{2}+y^{2}$
- Roots: $\{(0,0),(1,1)\}$
- $s(f,(0,0))=2$ and $s(f,(1,1))=1$
- $(0,0)$ lifts to $2^{2(2-1)}$ roots over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}$
- $(1,1)$ lifts to none

Roots of f over $\left(\mathbb{Z} /\left\langle 2^{2}\right\rangle\right)^{2}:\{(0,0),(0,2),(2,0),(2,2)\}$

Complexity

- The number of nodes in the tree is bounded by $\left\lfloor\frac{d p^{n-1}}{2}\right\rfloor\left\lfloor\frac{k-1}{2}\right\rfloor+1$

Complexity

- The number of nodes in the tree is bounded by $\left\lfloor\frac{d p^{n-1}}{2}\right\rfloor\left\lfloor\frac{k-1}{2}\right\rfloor+1$
- At each node we need to count the number of points over \mathbb{F}_{p}

Complexity

- The number of nodes in the tree is bounded by $\left\lfloor\frac{d p^{n-1}}{2}\right\rfloor\left\lfloor\frac{k-1}{2}\right\rfloor+1$
- At each node we need to count the number of points over \mathbb{F}_{p}
- For curves $(\mathrm{n}=2)$ one can attain complexity $d k p^{1+o(1)}$ if one has access to algorithms which count over \mathbb{F}_{p} in time $(\log p)^{O(1)}$

Future Work

- Improve root finding for \tilde{f} over \mathbb{F}_{p}

Future Work

- Improve root finding for \tilde{f} over \mathbb{F}_{p}
- Currently using brute force

Future Work

- Improve root finding for \tilde{f} over \mathbb{F}_{p}
- Currently using brute force
- Should move to more recent algorithms with complexity $O(\sqrt{p})$.

Future Work

- Improve root finding for \tilde{f} over \mathbb{F}_{p}
- Currently using brute force
- Should move to more recent algorithms with complexity $O(\sqrt{p})$.
- Computing the intermediate $f_{i, \zeta}$ can be sped up with some interpolation tricks.

Future Work

- Improve root finding for \tilde{f} over \mathbb{F}_{p}
- Currently using brute force
- Should move to more recent algorithms with complexity $O(\sqrt{p})$.
- Computing the intermediate $f_{i, \zeta}$ can be sped up with some interpolation tricks.
- In one variable, [BLQ13] showed that $O(d k \log p)$ is possible. Two variable case is open!

The End

