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Main Question

When do mixed volume equal to the maximum number of positive steady states?

Why do we care?

Calculating mixed volume is faster.

There are CRN that hold the property.

It hasn’t been looked at by others that much.

Chemical Reaction Network: Model of chemical reactions happening around us.

H2 + O
κ1

κ2
H2O −→ 2A+B

k1

k2
C

Derived ODE:

a′ = −k1a2b + k2c

b′ = −k1a2b + k2c

c′ = k1a2b − k2c

Conservation Law:

b − a = T

a + c = S
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Mixed volume: Number of nonzero complex solutions to polynomial system.

MV(p1, p2, . . . pn) =
∑

J⊆{1,2,...,n}
(−1)n−#J Vol(

∑
j∈J

pj ) [6]

PHCpack package in Macaulay2 also calculates mixed volume.

Fully Reversible Network: All the product complexes are also reactant complex and
vice versa.

Irreversible Network: There is no way in the network to reach to starting reactant
complexes from product complexes.
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False Conjecture

Conjecture

If mixed volume equals to number of positive steady states in a irreversible CRN, then
making it fully reversible does not change equality.

B + E

k
8

A + C
k 3

A
k1

k2
B

k 7

k 6

D
k4

k5

Figure: Mixed volume 6= positive steady states

Solution≈ (8.575−11−1.136−10i, 8.575−11−1.136−10,−1.4598+1.4808i, 1,−410.656−
401.14i)
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Monomolecular CRN

nA
k1

(n − 1)A
k2 . . .

ki−1
mA

ki
(m − 1)A

Figure: Generalized Monomolecular Irreversible Network

The ODE we get from the CRN in Figure 1 is given by,

da
dt

= −k1an − k2an−1 − · · · − ki am

We can get the solutions for a by setting this ODE to zero,

−k1an − k2an−1 − · · · − ki am = 0

−am(knan−m + kn−1an−m−1 + · · ·+ ki a0) = 0

By Fundamental Theorem of Algebra

m degenerate solutions where a = 0 and n −m nonzero complex solutions or mixed
volume.
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Monomolecular Networks

Descartes’ Rule
The number of positive solutions to a univariate polynomial ≤ number of sign changes
when it’s expanded with respect to its variable.

Assume the derived univariate polynomial has alternating signs,

k1an − k2an−1 + · · · − ki am = 0

a = 0 with multiplicity m, and mixed volume = n − m = Maximum number of steady
states.

Theorem
If the number of sign changes in the simplified polynomial acquired from the ODE equal
to mixed volume, then the maximum number of steady states equal to mixed volume.
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Monomolecular Network

Example:

A
k1

k2
0

k3
2A

k4
3A

ODE:

da
dt

= (k1 + 2k3)− k2a + k4a2

Solve:

(k1 + 2k3)− k2a + k4a2 = 0

Substitute k1 = 1, k2 = 3, k3 = 0.5, k4 = 1:

a = {2, 1}
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Bimolecular Networks

A + 2B
k1

2A + 3B

2A + 2B
k2

A + B

Figure: Bimolecular chemical reaction network

ODE’s and conservation law:

a′ = k1ab2 − k2a2b2

b′ = k1ab2 − k2a2b2

a− b = T forT ∈ R+

a = T + b

By substitution,

k1(T + b)b2 − k2(T + b)2b2 = 0

Assuming k1 = 1, k2 = 0.5,T = 1 we get,

(a, b) = {(−1, 0), (1, 2), (0, 1), (0, 1)}
∴ Mixed volume = 1,Steady state = 1
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Bimolecular Network

A + 2B
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A + B

Figure: Bimolecular chemical reaction network

0 1 2 3

1

2

3

(1, 2) (2, 2)

Figure: Reaction graph: Flipped version of Harry Potter’s scar?
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Bimolecular network

Reactant Polytope: Convex hull polytope created only by the reactants’ exponent vec-
tor.

A + 2B
k1

2A + 3B

2A + 2B
k2

A + B

Figure: Bimolecular chemical reaction network
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Figure: Reactant Polytope: Flipped version of Harry Potter’s scar?
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Further Research

Can we prove that regardless of the number of species in a chemical reaction
network, if only one reactant species changes in the reactant complex while the
other species are constant, then the maximum number of positive steady states
would be equal to number of sign changes?

Is there at all any fully reversible network that hold the property?

Can there be network whose reactant species are all inconsistant throughout the
network but mixed volume equals to maximum number of positive steady states?
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