An Efficient Way of Understanding the Maximum Number of Steady States of Chemical Reaction Networks

Dilruba Sofia

University of Massachusetts
Dartmouth
Joint work with Nida Obatake and Anne Shiu
REU 2019
Texas A\&M University

July 22, 2019

Schedule

- Backgrounds
- Results
- Questions

Backgrounds

Main Question

When do mixed volume equal to the maximum number of positive steady states?

Why do we care?

- Calculating mixed volume is faster.
- There are CRN that hold the property.
- It hasn't been looked at by others that much.

Backgrounds

Main Question

When do mixed volume equal to the maximum number of positive steady states?

Why do we care?

- Calculating mixed volume is faster.
- There are CRN that hold the property.
- It hasn't been looked at by others that much.

Chemical Reaction Network: Model of chemical reactions happening around us.

$$
\mathrm{H}_{2}+\mathrm{O} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} \mathrm{H}_{2} \mathrm{O} \quad \longrightarrow \quad 2 \mathrm{~A}+\mathrm{B} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{C}
$$

Backgrounds

Main Question

When do mixed volume equal to the maximum number of positive steady states?

Why do we care?

- Calculating mixed volume is faster.
- There are CRN that hold the property.
- It hasn't been looked at by others that much.

Chemical Reaction Network: Model of chemical reactions happening around us.

$$
\mathrm{H}_{2}+\mathrm{O} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} \mathrm{H}_{2} \mathrm{O} \quad \longrightarrow \quad 2 \mathrm{~A}+\mathrm{B} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{C}
$$

Derived ODE:

$$
\begin{array}{r}
a^{\prime}=-k_{1} a^{2} b+k_{2} c \\
b^{\prime}=-k_{1} a^{2} b+k_{2} c \\
c^{\prime}=k_{1} a^{2} b-k_{2} c
\end{array}
$$

Conservation Law:

$$
\begin{aligned}
& b-a=T \\
& a+c=S
\end{aligned}
$$

Mixed volume: Number of nonzero complex solutions to polynomial system.

$$
\begin{equation*}
\operatorname{MV}\left(p_{1}, p_{2}, \ldots p_{n}\right)=\sum_{J \subseteq\{1,2, \ldots, n\}}(-1)^{n-\# J} \operatorname{Vol}\left(\sum_{j \in J} p_{j}\right) \tag{6}
\end{equation*}
$$

■ PHCpack package in Macaulay2 also calculates mixed volume.

Backgrounds

Mixed volume: Number of nonzero complex solutions to polynomial system.

$$
\begin{equation*}
\operatorname{MV}\left(p_{1}, p_{2}, \ldots p_{n}\right)=\sum_{J \subseteq\{1,2, \ldots, n\}}(-1)^{n-\# J} \operatorname{Vol}\left(\sum_{j \in J} p_{j}\right) \tag{6}
\end{equation*}
$$

- PHCpack package in Macaulay2 also calculates mixed volume.

Fully Reversible Network: All the product complexes are also reactant complex and vice versa.

Irreversible Network: There is no way in the network to reach to starting reactant complexes from product complexes.

False Conjecture

Conjecture

If mixed volume equals to number of positive steady states in a irreversible CRN, then making it fully reversible does not change equality.

Figure: Mixed volume \neq positive steady states

Solution $\approx\left(8.575^{-11}-1.136^{-10} i, 8.575^{-11}-1.136^{-10},-1.459^{8}+1.480^{8} i, \mathbf{1},-410.656-\right.$ 401.14i)

Monomolecular CRN

$$
n \mathrm{~A} \xrightarrow{k_{1}}(n-1) \mathrm{A} \xrightarrow{k_{2}} \cdots \xrightarrow{k_{i-1}} m \mathrm{~A} \xrightarrow{k_{i}}(m-1) \mathrm{A}
$$

Figure: Generalized Monomolecular Irreversible Network

Monomolecular CRN

$$
n \mathrm{~A} \xrightarrow{k_{1}}(n-1) \mathrm{A} \xrightarrow{k_{2}} \cdots \xrightarrow{k_{i-1}} m \mathrm{~A} \xrightarrow{k_{i}}(m-1) \mathrm{A}
$$

Figure: Generalized Monomolecular Irreversible Network

The ODE we get from the CRN in Figure 1 is given by,

$$
\frac{d a}{d t}=-k_{1} a^{n}-k_{2} a^{n-1}-\cdots-k_{i} a^{m}
$$

We can get the solutions for a by setting this ODE to zero,

$$
\begin{gathered}
-k_{1} a^{n}-k_{2} a^{n-1}-\cdots-k_{i} a^{m}=0 \\
-a^{m}\left(k_{n} a^{n-m}+k_{n-1} a^{n-m-1}+\cdots+k_{i} a^{0}\right)=0
\end{gathered}
$$

By Fundamental Theorem of Algebra

m degenerate solutions where $a=0$ and $n-m$ nonzero complex solutions or mixed volume.

Monomolecular Networks

Descartes' Rule

The number of positive solutions to a univariate polynomial \leq number of sign changes when it's expanded with respect to its variable.

Assume the derived univariate polynomial has alternating signs,

$$
k_{1} a^{n}-k_{2} a^{n-1}+\cdots-k_{i} a^{m}=0
$$

Monomolecular Networks

Descartes' Rule

The number of positive solutions to a univariate polynomial \leq number of sign changes when it's expanded with respect to its variable.

Assume the derived univariate polynomial has alternating signs,

$$
k_{1} a^{n}-k_{2} a^{n-1}+\cdots-k_{i} a^{m}=0
$$

$a=0$ with multiplicity m, and mixed volume $=n-m=$ Maximum number of steady states.

Monomolecular Networks

Descartes' Rule

The number of positive solutions to a univariate polynomial \leq number of sign changes when it's expanded with respect to its variable.

Assume the derived univariate polynomial has alternating signs,

$$
k_{1} a^{n}-k_{2} a^{n-1}+\cdots-k_{i} a^{m}=0
$$

$a=0$ with multiplicity m, and mixed volume $=n-m=$ Maximum number of steady states.

Theorem

If the number of sign changes in the simplified polynomial acquired from the ODE equal to mixed volume, then the maximum number of steady states equal to mixed volume.

Monomolecular Network

Example:

$$
\mathrm{A} \stackrel{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} 0 \xrightarrow{k_{3}} 2 \mathrm{~A} \xrightarrow{k_{4}} 3 \mathrm{~A}
$$

Solve:

$$
\left(k_{1}+2 k_{3}\right)-k_{2} a+k_{4} a^{2}=0
$$

$$
\frac{d a}{d t}=\left(k_{1}+2 k_{3}\right)-k_{2} a+k_{4} a^{2}
$$

$$
\text { Substitute } k_{1}=1, k_{2}=3, k_{3}=0.5, k_{4}=1 \text { : }
$$

$$
a=\{2,1\}
$$

Bimolecular Networks

$$
\begin{aligned}
& \mathrm{A}+2 \mathrm{~B} \xrightarrow{k_{1}} 2 \mathrm{~A}+3 \mathrm{~B} \\
& 2 \mathrm{~A}+2 \mathrm{~B} \xrightarrow[k_{2}]{ } \mathrm{A}+\mathrm{B}
\end{aligned}
$$

Figure: Bimolecular chemical reaction network

Bimolecular Networks

$$
\begin{array}{ll}
\mathrm{A}+2 \mathrm{~B} \xrightarrow{k_{1}} & 2 \mathrm{~A}+3 \mathrm{~B} \\
2 \mathrm{~A}+2 \mathrm{~B} \xrightarrow[k_{2}]{ } & \mathrm{A}+\mathrm{B}
\end{array}
$$

Figure: Bimolecular chemical reaction network

ODE's and conservation law:

$$
\begin{aligned}
& a^{\prime}=k_{1} a b^{2}-k_{2} a^{2} b^{2} \\
& b^{\prime}=k_{1} a b^{2}-k_{2} a^{2} b^{2} \\
& a-b=T \quad \text { for } T \in \mathbb{R}^{+} \\
& a=T+b
\end{aligned}
$$

By substitution,

$$
k_{1}(T+b) b^{2}-k_{2}(T+b)^{2} b^{2}=0
$$

Assuming $k_{1}=1, k_{2}=0.5, T=1$ we get,
$(a, b)=\{(-1,0),(1,2),(0,1),(0,1)\}$
\therefore Mixed volume $=1$, Steady state $=1$

Bimolecular Network

$$
\begin{aligned}
& \mathrm{A}+2 \mathrm{~B} \xrightarrow{k_{1}} 2 \mathrm{~A}+3 \mathrm{~B} \\
& 2 \mathrm{~A}+2 \mathrm{~B} \xrightarrow{k_{2}}
\end{aligned}
$$

Figure: Bimolecular chemical reaction network

Figure: Reaction graph: Flipped version of Harry Potter's scar?

Bimolecular network

Reactant Polytope: Convex hull polytope created only by the reactants' exponent vector.

$$
\begin{aligned}
& \mathrm{A}+2 \mathrm{~B} \xrightarrow{k_{1}} 2 \mathrm{~A}+3 \mathrm{~B} \\
& 2 \mathrm{~A}+2 \mathrm{~B} \xrightarrow{k_{2}}
\end{aligned} \mathrm{~A}+\mathrm{B} \text {. }
$$

Figure: Bimolecular chemical reaction network

Figure: Reactant Polytope: Flipped version of Harry Potter's scar?

Further Research

- Can we prove that regardless of the number of species in a chemical reaction network, if only one reactant species changes in the reactant complex while the other species are constant, then the maximum number of positive steady states would be equal to number of sign changes?

Further Research

- Can we prove that regardless of the number of species in a chemical reaction network, if only one reactant species changes in the reactant complex while the other species are constant, then the maximum number of positive steady states would be equal to number of sign changes?
- Is there at all any fully reversible network that hold the property?

Further Research

- Can we prove that regardless of the number of species in a chemical reaction network, if only one reactant species changes in the reactant complex while the other species are constant, then the maximum number of positive steady states would be equal to number of sign changes?
- Is there at all any fully reversible network that hold the property?
- Can there be network whose reactant species are all inconsistant throughout the network but mixed volume equals to maximum number of positive steady states?

Acknowledgements

Thanks! National Science Foundation Texas A\&M University
Nida Obatake and Anne Shiu

References

E. Gross, S. Petrovic, and J. Verschelde.

PHCpack: Interface to PHCpack. Version 1.8.
A Macaulay2 package available at https:
//github. com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.

E. Gross, S. Petrovic, and J. Verschelde. Interfacing with PHCpack.
The Journal of Software for Algebra and Geometry, 5, 2013.

C. Hill, T. Duff, K. Lee, A. Leykin, A. Iosif, and M. Adamer.

ReactionNetworks: A Macaulay2 package. Version 1.0.
A Macaulay2 package available at https:
//github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.
B. Joshi and A. Shiu.

Atoms of multistationarity in chemical reaction networks.
arXiv e-prints, page arXiv:1108.5238, Aug 2011.
N. Obatake, A. Shiu, X. Tang, and A. Torres.

Oscillations and bistability in a model of ERK regulation.
arXiv e-prints, page arXiv:1903.02617, Mar 2019.
B. Sturmfels.

Solving System of Polynomial Equations.
Jun 2002.

