Homework 10

Math 147, Fall 2023

This homework is due on Friday, October 27 (at the start of recitation). Turn in (via Gradescope) your answers to questions 1-3.
0. Read Section 5.1. After reading these sections, you should be able to answer the following questions (which are not to be turned in).

- Complete the following sentence: $f(x)$ has a local maximum at $x=a$ if and only if $-f(x)$ has a \qquad at $x=a$.
- The Mean-Value Theorem guarantees (under certain hypotheses) the existence of a number c with $a<c<b$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. Does it tell you where in the interval (a, b) the number c is, or how many such c exist? Could there be two? Could there be infinitely many? (Consider a straight line.)
- What does Rolle's Theorem say? How is it related to the Mean-Value Theorem?

1. For each of the following, give an example of such a function (a sketch of the graph with extrema labeled is fine) OR explain briefly why no such function exists.
(a) a function with 1 local maximum, 1 local minimum, and no global extrema
(b) a function with 2 local minima, 1 global minimum, and no local maxima
(c) a function with no local extrema
(d) a function with infinitely many global extrema
2. Find all critical numbers ${ }^{1}$ of the following functions:
(a) $f(x)=x^{3}+6 x^{2}+3 x-1$
(b) $g(x)=x+\sin x$
(c) $h(x)=\frac{1}{(1-x)^{2}}$
3. Section $5.1 \# 6,10,12,16,18$
4. (These problems are not to be turned in!) Section $5.1 \# 1,3,5,9,11,13,18,19,25$, 29, 33,
[^0]
[^0]: ${ }^{1}$ A critical number is some number c at which $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

