Homework 16

Math 147, Fall 2023

This homework is due on Friday, December 16 (at the start of recitation). Turn in (via Gradescope) your answers to questions 1-9.

0 . Read Sections 5.5, 5.10, 6.1-6.2. After reading these sections, answer the following questions (which are not to be turned in).

- Is $2 \sin x$ an antiderivative of $\sin ^{2} x$?
- Is $\cos x+\ln 5$ an antiderivative of $-\sin x$?
- If $f(x)$ is an even function $(f(-c)=f(c)$ for all real numbers $c)$, does this imply that $\int_{-2}^{2} f(x) d x=0$?
- What is an example of a function $f(x)$ for which $\int_{2}^{-5} f(x) d x$ is positive?

1. Compute the following limits:
(a) $\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x}$
(b) $\lim _{t \rightarrow 0} \frac{10^{t}-3^{t}}{t}$
(c) $\lim _{x \rightarrow 0^{+}} x^{\sqrt{x}}$
(d) $\lim _{t \rightarrow \infty} t-\ln t$
2. Determine the most general antiderivatives of the following functions:
(a) $f(x)=\frac{1}{3}-\frac{2}{x}$
(b) $f(x)=2^{x}+e^{3 x}+x \sqrt{x}$
(c) $f(x)=-2 \sin x$
3. (a) Sketch the region under the curve $y=\sqrt{x}$, for $0 \leq x \leq 16$. Compute the area.
(b) Sketch the region bounded by $y=x^{2}$ and $y=18-x^{2}$. Compute the area.
(c) Compute $\int_{0}^{1}(1+s)^{3} d s$.
4. (Write your own problem!) A \qquad is traveling at \qquad miles/hour when the brakes are applied, producing a constant deceleration of \qquad feet $/ \mathrm{sec}^{2}$. What is the distance traveled before the vehicle comes to a stop?
5. Compute the definite integral $\int_{1}^{3}(3-x) d x$ in two ways:
(a) by drawing the graph, and computing the appropriate area.
(b) using the Fundamental Theorem of Calculus.
6. Section $5.5 \# 12,16,18,24$
7. Section 5.10 \# 10, 24, 26, 70
8. Section 6.1 \# 62, 68
9. Section $6.2 \# 100$
10. (These problems are not to be turned in, but please make sure you can solve them BEFORE the final exam!)
(a) Graph the function $f(x)=1-|x|$, and compute the definite integral $\int_{-2}^{0.5} f(x) d x$.
(b) (Write your own problem!) Give an example of a definite integral of a non-constant function, for which the Riemann-sum approximation by \qquad rectangles and left endpoints is equal to \qquad .
(c) Section $6.2 \# 1,7,15,19,27,35,39,45,51,57,61,65,67,69,75,77,81,87,97$, $99,105,109,113,119$
