Homework 16

Math 147, Fall 2023

This homework is due on Friday, December 16 (at the start of recitation). Turn in (via Gradescope) your answers to questions 1-9.

- 0. Read Sections 5.5, 5.10, 6.1–6.2. After reading these sections, answer the following questions (which are *not* to be turned in).
 - Is $2 \sin x$ an antiderivative of $\sin^2 x$?
 - Is $\cos x + \ln 5$ an antiderivative of $-\sin x$?
 - If f(x) is an even function (f(-c) = f(c) for all real numbers c), does this imply that $\int_{-2}^{2} f(x) dx = 0$?
 - What is an example of a function f(x) for which $\int_2^{-5} f(x) dx$ is positive?
- 1. Compute the following limits:
 - (a) $\lim_{x\to 0^+} \frac{\ln x}{x}$
 - (b) $\lim_{t\to 0} \frac{10^t 3^t}{t}$
 - (c) $\lim_{x\to 0^+} x^{\sqrt{x}}$

(d)
$$\lim_{t\to\infty} t - \ln t$$

- 2. Determine the most general antiderivatives of the following functions:
 - (a) $f(x) = \frac{1}{3} \frac{2}{x}$

(b)
$$f(x) = 2^x + e^{3x} + x\sqrt{x}$$

(c) $f(x) = -2\sin x$

3. (a) Sketch the region under the curve $y = \sqrt{x}$, for $0 \le x \le 16$. Compute the area.

- (b) Sketch the region bounded by $y = x^2$ and $y = 18 x^2$. Compute the area.
- (c) Compute $\int_0^1 (1+s)^3 ds$.
- 4. (Write your own problem!) A ________ is traveling at _________ miles/hour when the brakes are applied, producing a constant deceleration of _________ feet/sec². What is the distance traveled before the vehicle comes to a stop?
- 5. Compute the definite integral $\int_1^3 (3-x) dx$ in two ways:
 - (a) by drawing the graph, and computing the appropriate area.
 - (b) using the Fundamental Theorem of Calculus.

- 6. Section 5.5 # 12, 16, 18, 24
- 7. Section 5.10 # 10, 24, 26, 70
- 8. Section 6.1 # 62, 68
- 9. Section 6.2 # 100
- 10. (These problems are *not* to be turned in, but please make sure you can solve them BEFORE the final exam!)
 - (a) Graph the function f(x) = 1 |x|, and compute the definite integral $\int_{-2}^{0.5} f(x) dx$.
 - (b) (Write your own problem!) Give an example of a definite integral of a non-constant function, for which the Riemann-sum approximation by $__{positive number, at least 4}$ rectangles and left endpoints is equal to $__{number}$.
 - (c) Section 6.2 # 1, 7, 15, 19, 27, 35, 39, 45, 51, 57, 61, 65, 67, 69, 75, 77, 81, 87, 97, 99, 105, 109, 113, 119