Homework 4

Math 147, Fall 2023

This homework is due on Friday, September 15 (at the start of recitation). Turn in (via Gradescope) your answers to questions 1-7.

Hint: If you do not have a graphing calculator, use this one online: www.desmos.com/ calculator
0. Read Sections 3.2, 3.3, 3.4

1. For each of the following functions $h(x)$, determine the domain and where (at which points) the function is continuous. Additionally, find functions $f(x)$ and $g(x)$ such that $h(x)=f \circ g(x)$. Recall that $f \circ g(x):=f(g(x))$.
(a) $h(x)=\cos \left(\frac{x^{2}-3}{1-x}\right)$
(b) $h(x)=\log _{3}(1-x)$
2. Section $1.3 \# 18$
3. Are there real numbers a and b for which the following function $f(x)$ is continuous? If so, then determine a and b, and sketch a graph of $f(x)$. If not, then explain why not.

$$
f(x)=\left\{\begin{array}{cl}
-1 & \text { if } x \leq-1 \\
a x+b & \text { if }-1<x<1 \\
5 & \text { if } x \geq 1
\end{array}\right.
$$

4. Evaluate the following limits. Show your work.
(a) $\lim _{x \rightarrow \infty}-3 x^{5}+6 x$
(b) $\lim _{x \rightarrow-\infty} x e^{-x}$
(c) $\lim _{x \rightarrow \infty} \frac{3 x^{3}+2 x^{5}-1}{-x^{2}+5}$
(d) $\lim _{x \rightarrow \infty} \frac{x^{5}+8}{-2 x^{2}+6 x^{3}}$
(e) $\lim _{x \rightarrow 0^{-}} \frac{\cos x}{x}$
(f) $\lim _{x \rightarrow 0} \frac{\cos x}{x}$
(g) $\lim _{x \rightarrow 0} 2 x^{3} \cos x$
(h) $\lim _{x \rightarrow \infty} \frac{\sin x}{x^{3}+6}$
5. Section 3.2 \# 8, 28, 49
6. Section $3.3 \# 20,28$
7. Section 3.4 \# 4, 10, 12, 16
8. (These problems are not to be turned in!)
(a) Section 1.3 \# 16
(b) Section $3.2 \# 5,7,11,15,20,23,41,45$
(c) Section $3.3 \# 1,3,5,8,13,21,25,29$
(d) Section $3.4 \# 2,5,11,13,15,17$
9. (These problems are not to be turned in!) For each function below, determine the value(s) (if any) of a that make $f(x)$ continuous.
(a)

$$
f(x)=\left\{\begin{array}{cl}
a & \text { if } x \leq \pi \\
\cos x & \text { if } x>\pi
\end{array}\right.
$$

(b)

$$
f(x)= \begin{cases}e^{x} & \text { if } x<0 \\ a x & \text { if } x \geq 0\end{cases}
$$

