## Homework 11

Math 171H (section 201), Fall 2023

This homework is due on Tuesday, October 31 at the start of class. (Turn in answers to questions $1-8$.)
0. (This problem is not to be turned in.)
(a) Read Sections 4.2-4.3
(b) Find all critical numbers of the following functions:

- $f(x)=x^{3}+6 x^{2}+3 x-1$
- $g(x)=x+\sin x$
- $h(x)=\frac{1}{(1-x)^{2}}$
(c) Complete the following claims, and then give a proof:
- $f(x)$ is increasing on an interval $I$ if and only if $-f(x)$ is $\qquad$ on $I$.
- $f(x)$ is concave up on an interval $I$ if and only if $-f(x)$ is $\qquad$ on $I$.

1. Determine the value(s) of $m$ and $b$ that make the following function differentiable:

$$
f(x)= \begin{cases}\arctan x & \text { if } x<1 \\ m x+b & \text { if } x \geq 1\end{cases}
$$

2. (a) Does $f(x)=1 / x$ satisfy the hypotheses of the Mean Value Theorem on the interval $[1,4]$ ? If yes, then find all values $c$ that satisfy the conclusion of the theorem. If not, explain why not.
(b) Does $f(x)=|x-1|$ satisfy the hypotheses of the Mean Value Theorem on the interval $[0,2]$ ? If yes, then find all values $c$ that satisfy the conclusion of the theorem. If not, explain why not.
(c) Does $f(x)=|x-1|$ satisfy the hypotheses of the Mean Value Theorem on the interval $[1,4]$ ? If yes, then find all values $c$ that satisfy the conclusion of the theorem. If not, explain why not.
3. Assume that $f^{\prime}(x)=(x-1)(x-2)$.
(a) On what intervals is $f(x)$ increasing?
(b) List all $x$-values at which $f(x)$ has a local maximum.
(c) List all $x$-values at which $f(x)$ has a local minimum.
(d) Can you determine where $f(x)>0$ and where $f(x)<0$ and where $f(x)=0$ ? Explain.
4. Prove or disprove:
(a) If $f(x)$ is differentiable and decreasing on an open interval $(a, b)$, then $f^{\prime}(x)<0$ on $(a, b)$.
(b) If $f^{\prime}(a)<0$ (for some real number $a$ ), then $f(x)$ is decreasing on an interval containing $a$.
5. Assume that $f(x)$ is decreasing on $(a, b)$.
(a) Give an example of such a function (and an interval $(a, b)$ ), for which $f(x)$ is continuous.
(b) Give an example of such a function (and an interval $(a, b)$ ), for which $f(x)$ is discontinuous.
(c) Prove that $f(x)$ (with domain $(a, b)$ ) has an inverse.
(d) Is the inverse $f^{-1}(x)$ decreasing or increasing or neither? Prove your answer.
6. For each of the following, give an example of a function (a sketch of the graph is fine) with the listed properties:
(a) $f(x)$ is increasing and concave up (on all of the domain)
(b) $f(x)$ is increasing and concave down (on all of the domain)
(c) $f(x)$ is decreasing and concave up (on all of the domain)
(d) $f(x)$ is decreasing and concave down (on all of the domain)
7. A fixed point of $f(x)$ is a value $c$ at which $f(c)=c$. Prove the following: If $f(x)$ is differentiable on an interval and has at least 2 fixed points (in that interval), then $f^{\prime}(a)=1$ for some a in the interval.
8. Assume that $f^{\prime \prime}(x)>0$ on an interval $(a, b)$. The goal is this problem is to prove that $f(x)$ is concave up on $(a, b)$.
(a) Prove that $f^{\prime}(x)$ is increasing on $(a, b)$.
(b) Show that $f(x)$ is concave up on $(a, b)$ if and only if $f(x)>f(c)+f^{\prime}(c)(x-c)$ for all $c$ in $(a, b)$ and all $x$ in $(a, b) \backslash\{c\}$. (Hint: $f(c)+f^{\prime}(c)(x-c)$ is the equation of a tangent line.)
(c) Let $c$ be in $(a, b)$. Prove that if there exists $d$ in $(a, b) \backslash\{c\}$ such that $f(d) \leq f(c)+$ $f^{\prime}(c)(d-c)$, then $f^{\prime}(x)$ is not increasing on $(a, b)$. (Hint: Apply the Mean Value Theorem to $[c, d]$ if $c<d$ or to $[d, c]$ if $d<c$.)
(d) Use (a)-(c) to conclude that $f(x)$ is concave up on $(a, b)$.
