Homework 12

Math 171H (section 201), Fall 2023

This homework is due on THURSDAY, Nov. 9 at the start of class. (Turn in answers to questions 1-5.)
0. Read Section 4.4-4.6

1. Consider the function $f(x)=1+3 x^{2}-2 x^{3}$.
(a) Use derivative tests to determine where f is increasing, decreasing, concave up, and concave down.
(b) Are there any inflection points?
(c) Sketch a graph based on your above answers.
2. Prove the following: If f and g are continuous and $[a, b]$ and differentiable on (a, b), then there is a number c in (a, b) such that

$$
(f(b)-f(a)) g^{\prime}(c)=(g(b)-g(a)) f^{\prime}(c)
$$

Hint: Apply a theorem to the following function:

$$
(f(x)-f(a))(g(b)-g(a))-(f(b)-f(a))(g(x)-g(a))
$$

3. Compute the following limit:

$$
\lim _{x \rightarrow \infty}\left(\frac{3 x-1}{2-x}\right)+\left(1+\frac{5}{x}\right)^{x}
$$

4. For each of the following functions, find all local extrema (max or min) and all global extrema. (Hint: ideas from the next problem might be useful. Also, you can always check your answer using a graphing calculator.)
(a) $2 x^{3}-3 x^{2}$
(b) $\frac{1}{3} x^{3}+4 x$
(c) $e^{x}+\sin x$ with domain $[0, \infty)$
(d) $e^{x}+x^{x}$ with domain $(1, \infty)$
5. These problems pertain to the discriminant of a quadratic equation. You can review this topic on page 13 at https://people.tamu.edu/~j-epstein/Math147/Chapter1. 1.pdf.
(a) Does $x^{2}-5 x+2=0$ have a real solution? Explain.
(b) Does $x^{2}-2 x+5=0$ have a real solution? Explain.
(c) Does $x^{2}+4=0$ have a real solution? Explain.
(d) Is $f(x)=x^{2}-6 x+1$ always positive? Explain.
(e) Is $f(x)=-x^{2}+x+6$ always negative? Explain.
