Homework 14

Math 171H (section 201), Fall 2023

This homework is due on Tuesday, November 21 at the start of class. (Turn in answers to questions 1-10.)
0. Read Sections 4.9, 5.2, 5.3

1. Determine the most general antiderivatives of the following functions:
(a) $f(x)=\frac{1}{3}-\frac{2}{x}$
(b) $f(x)=2^{x}+e^{3 x}+x \sqrt{x}$
(c) $f(x)=-2 \sin x$
2. Find a function $f(x)$ for which

- $f^{\prime}(x)=x^{3}$, and
- the line $y=x+1.25$ is tangent to the graph of $f(x)$.

3. Sketch a graph of $F(x)=\int_{1}^{x} f(x) d x$, where

$$
f(x)= \begin{cases}1 & \text { if } x \leq 2 \\ 2 & \text { if } x>2\end{cases}
$$

4. (a) Sketch the region under the curve $y=\sqrt{x}$, for $0 \leq x \leq 16$. Compute the area.
(b) Sketch the region bounded by $y=x^{2}$ and $y=18 \quad x^{2}$. Compute the area.
(c) Compute $\int_{0}^{1}(1+s)^{3} d s$.
5. Prove or disprove:

$$
\int_{a}^{b} f(x) d x=\int_{a+c}^{b+c} f(x-c) d x
$$

6. Prove or disprove:
(a) If $\int_{a}^{b} f(x) d x=0$, then $f(x)=0$ for all x in $[a, b]$.
(b) If $\int_{a}^{b} f(x) d x=0$ and $f(x) \geq 0$ for all x in $[a, b]$, then $f(x)=0$ for all x in $[a, b]$.
(c) If $f(x)$ is continuous and non-negative $(f(x) \geq 0)$ on $[a, b]$, and $f\left(x_{0}\right)>0$ for some x_{0} in (a, b), then $\int_{a}^{b} f(x) d x>0$.
7. Assume a and b are real numbers. Compute $F^{\prime}(x)$.
(a) $F(x)=\int_{0}^{x} x^{2} f(t) d t$
(b) $F(x)=\int_{a}^{x^{2}} \cos ^{3}(t) d t$
(c) $F(x)=\int_{2}^{\left(\int_{1}^{x} \ln s d s\right)} \sqrt{t} d t$
(d) $F(x)=\int_{a}^{x}\left(\int_{b}^{y} 3^{t} d t\right) d y$.
8. (Write your own problem!) A \qquad is traveling at \qquad miles/hour when the brakes are applied, producing a constant deceleration of \qquad feet $/ \sec ^{2}$. What is the distance traveled before the vehicle comes to a stop?
9. (Write your own problem!) Give an example of a definite integral of a non-constant function, for which the Riemann-sum approximation by \qquad rectangles and left endpoints is equal to \qquad positive number, at least 4 .
10. Compute the definite integral $\int_{1}^{3}(3-x) d x$ in three ways:
(a) by drawing the graph, and computing the appropriate area.
(b) using the limit definition (via Riemann sums).
(c) using the Fundamental Theorem of Caleulus.
