Homework 15

Math 171H (section 201), Fall 2023

This homework is due on **Thursday**, **November 30** at the start of class. (Turn in answers to questions 1–7.)

- 0. Read Sections 5.4-5.5
 - (a) Explain the difference between definite and indefinite integrals.
 - (b) How is the definite integral $\int_a^b f(x) dx$ related to the indefinite integral $\int f(x) dx$?
- 1. (a) Sketch the region under the curve $y = \sqrt{x}$, for $0 \le x \le 16$. Compute the area.
 - (b) Sketch the region bounded by $y = x^2$ and $y = 18 x^2$. Compute the area.
 - (c) Compute $\int_0^1 (1+s)^3 ds$.
- 2. Compute the definite integral $\int_1^3 (3-x) dx$ by using the Fundamental Theorem of Calculus. (Does your answer match your answer from HW 14?)
- 3. Compute the area of the shaded region shown below (use your best guess for what the function is).

- 4. Consider the function $f(x) = \int_0^x 1 + \sin(\sin t) dt$.
 - (a) Show that f(x) is an increasing function. Conclude that $f^{-1}(x)$ exists.
 - (b) Compute $\frac{df^{-1}}{dx}$ at 0.
- 5. Is there a continuous function f for which

$$\int_{1}^{x} f(t)dt = (f(x))^{2} + 8.1 ?$$

If so, find all such functions. If not, explain why not.

6. Find a function g for which

$$\int_{2}^{x^{2}} tg(t)dt = x + x^{2} ,$$

or explain why no such function exists.

- 7. Compute the following definite integrals.
 - (a) $\int_0^2 \cos(\pi\theta/2) d\theta$ (b) $\int_0^2 (4t-2)^{21} dt$ (c) $\int_0^1 \sqrt{t/2 - 1} dt$ (d) $\int_0^2 \frac{dx}{1 - 2x}$
 - (e) $\int_0^{\pi/4} \frac{\sin t}{\cos^2 t} dt$ (f) $\int_0^1 x e^{-x^2} dx$

 - (g) $\int_{-\pi/4}^{\pi/4} -x^2 \sin x dx$