Homework 5

Math 171H (section 201), Fall 2023

This homework is due on Tuesday, September 19 at the start of class. (Turn in answers to questions 1-11.)
0. Read Sections 2.6-2.8, including the topic of horizontal asymptotes (page 128).

1. Give an example of a function with a horizontal asymptote $y=10$ and a vertical asymptote at $x=-1$. Briefly justify your answer.
2. State a definition for the following.
(a)

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

(b)

$$
\lim _{x \rightarrow \infty} f(x)=-\infty
$$

3. Let n be a positive integer. Compute the following limit (and verify your answer using the definition):

$$
\lim _{x \rightarrow \infty} x^{n}
$$

Hint: Consider two cases, based on whether n is even or odd.
4. (Uniqueness of limits) Prove that if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} f(x)=M$, then $L=M$.
5. Read the Squeeze Theorem (page 101), and then use it to compute the following limit:

$$
\lim _{x \rightarrow \infty} e^{-x} \cos (x)
$$

6. For each of the following functions $h(x)$, determine the domain and where (at which points) the function is continuous. Additionally, find functions $f(x)$ and $g(x)$ such that $h(x)=f \circ g(x) .($ Recall that $f \circ g(x):=f(g(x))$.)
(a) $h(x)=\cos \left(\frac{x^{2}-3}{1-x}\right)$
(b) $h(x)=\log _{3}(1-x)$
7. Determine the domain and where the function $f(x)=\ln (\ln x)$ is continuous. Compute $\lim _{x \rightarrow \infty} f(x)$, and prove your answer using the definition.
8. If the tangent line to $y=f(x)$ at $x=4$ passes through the points $(3,0)$ and $(5,4)$, then what are $f(4)$ and $f^{\prime}(4)$? (Show your work.)
9. The following is the derivative of a function $f(x)$ at some number $x=a$:

$$
\lim _{h \rightarrow 0} \frac{e^{3(2+h)}-e^{3 \cdot 2}}{h}
$$

Determine the function $f(x)$ and the number a.
10. Use the limit definition to compute the derivative of the following functions:
(a) $f(x)=c$ (a constant function)
(b) $f(x)=x$
11. Use the limit definition to prove the following: If $f(x)$ and $g(x)$ are differentiable at $x=a$, then the function $f(x)+g(x)$ is too.

