Homework 14

Math 300, Fall 2022

This homework is due on WEDNESDAY, Nov. 30.
0. (This problem is not to be turned in.) Read Sections 6.1-6.3
(a) Are the Well-ordering principle and the Principle of mathematical induction, equivalent?
(b) What does it mean that the Well-ordering principle is an axiom?
(c) What is a linear combination? (page 138)
(d) Prove the following:

If a is a nonzero integer and c is an integer, then $\operatorname{gcd}(a, c a)=a$.

1. Read about "that" vs. "which". How should you decide which one to use (in your writing)?
2. Answer the following questions, and explain your answers.
(a) Is the Well-ordering principle still true if, instead of subsets of the nonnegative integers, we consider subsets of the positive integers?
(b) Does every non-empty subset of \mathbb{Z} have a largest element?
(c) Does every non-empty subset of \mathbb{R} have a smallest element?
3. Consider the function $f: \mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{Z} \times \mathbb{Z}$ (where $\mathbb{N}:=\{1,2,3, \ldots\}$) given by:

$$
f(a, b)=(q, r),
$$

where q and r are the "quotient" and "remainder" obtained by applying the division algorithm to a and b (so, $a=b q+r$).
(a) Compute $f(40,7)$ and $f(-20,3)$. (No proof necessary.)
(b) Is f one-to-one? Prove your answer.
(c) Is f onto? Prove your answer.
4. (No proofs necessary for this problem.)
(a) Give an example of integers a and b, with $a<0$ and $b<0$, such that their g.c.d. is 8 .
(b) Give an example of integers a and b, with $a \geq 20$ and $b \geq 20$, such that their g.c.d. is 12 .
5. Let a and b be nonzero integers. Let $d=\operatorname{gcd}(a, b)$. Prove that a / d and b / d are both integers.
6. Section 6.1 \#1, 3 (Hint: Read Example 6.1.4.)
7. Section $6.2 \# 1(\mathrm{a}, \mathrm{b}), 3$
8. Section 6.3 \# 3

