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Abstract

We present a new, far simpler family of counter-examples to Kushnirenko’s Conjecture.
Along the way, we illustrate a computer-assisted approach to finding sparse polynomial systems
with maximally many real roots, thus shedding light on the nature of optimal upper bounds in
real fewnomial theory. We use a powerful recent formula for the A-discriminant, and give new
bounds on the topology of certain A-discriminant varieties. A consequence of the latter result
is a new upper bound on the number of topological types of certain real algebraic sets defined
by sparse polynomial equations.

1 Introduction

The algorithmic study of real solutions of systems of multivariate polynomial equations is central
in science and engineering, as well as in mathematics. For instance, entire fields such as Computer
Aided Geometric Design and Control Theory essentially revolve on basic but highly non-trivial
questions involving certain structured polynomial systems (see, e.g., [GK03, RS98]). Furthermore,
polynomial systems whose real roots lie outside the reach of current algorithmic techniques regularly
occur in a myriad of industrial problems, and many of these problems involve sparse polynomial
systems, i.e., equations with “few” monomial terms. Understanding the number of real solutions
of sparse polynomial equations is thus fundamentally important in real algebraic geometry.

Here we shed light on the difficulty behind determining the maximal number of real roots of
polynomial systems with a fixed number of exponent vectors. We give new, dramatically simpler
counter-examples (in Theorem 1.1 below) to an earlier conjectural upper bound of Kushnirenko. A
consequence of our investigation is a precise quantitative statement that (for many fixed choices of
exponent vectors) sparse polynomial systems with maximally many real roots are very rare: they
lie in extremely small chambers — determined by a suitable discriminant variety — in the space
of coefficients (Theorem 1.2 below). Moreover, we prove an explicit upper bound on the number
of such chambers (see the proof of Theorem 1.3 below). This in turn implies a new upper bound
on the number of smooth topological types attainable in families of real algebraic sets defined by
certain sparse polynomials (Theorem 1.3 and Corollary 1.4 below).
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The techniques of our paper actually extend to general A-discriminants and counting topological
types of real zero sets of general sparse polynomials. The latter results will appear in a forthcoming
paper. However, the special cases covered here already yield new results on extremal real algebraic
geometry, which we now review in detail.

1.1 Background on Extremal Estimates

In a book published in June 1637, René Descartes stated that any real univariate polynomial
with exactly m monomial terms has at most m — 1 positive roots [SL54]. Unlike the behavior
of complex roots, Descartes’ bound on the number of real roots is completely independent of the
degree of the polynomial. However, nearly four centuries later, we still lack a definitive analogue
for systems of multivariate polynomials. Great progress was made by Khovanskii and Sevastyanov
[Kho80, Kho91] around the late 1970’s, culminating in an explicit upper bound for the number of
non-degenerate positive roots of general sparse polynomial systems. This bound — a very special
case of Khovanskii’s Theorem on Real Fewnomials [Kho91] — revealed that the maximal
number of isolated real roots of polynomial systems with a fixed number of exponent vectors is
independent of the sizes of the exponent vectors. Khovanskii’s theory has since enabled important
advances in many different areas, e.g., Hilbert’s 16 Problem [Kal03], algorithmic complexity
[GV01, VGO03, BRS06], the study of torsion points on algebraic curves [CZ02], and model theory
[Wil99], to name but a few (see also the conclusion and bibliography of [Kho91]).

Khovanskii’s original bound is now known to be far from tight (see, e.g., [LRW03, BS06]). More
to the point, finding general optimal bounds is a decades-old problem whose solution would have
significant impact outside, as well as inside, real algebraic geometry. Unfortunately, finding optimal
bounds even for two equations in two unknowns — with just three terms each — turned out to be
difficult enough to take close to 20 years to do.

To clarify this difficulty, consider the following polynomial system, which we will call the Haas
system with parameters (a,b,d):

g [hy) =2 ayt oy
(@bd) = hy(a,y) := y2 + bzl — z
Letting R* := R\ {0} and letting Ry denote the positive ray, we call the collection of systems
{H(ap,d) } (a,b,d)e ()2 xn the Haas family.

Definition 1.1. Given any f € Rlzy,... 5] with f(z) =", c;x% (where the a; are pair-wise
distinct and all ¢; are nonzero)* we call f a (real) n-variate m-nomial. Also, given fi,..., fx
with f; an n-variate m;-nomial for all i, we call F:=(f1,..., fr) a k x n fewnomial system of
type (mai,...,mg). Finally, if the total number of distinct exponent vectors among the f; is m,
then we can also call F' an m-sparse k x n fewnomial system. ¢

Thus, for example, any system from the Haas family can be referred to as (a) a 2 x 2 fewnomial
system of type (3,3), (b) a 2 x 2 trinomial system, or (¢) a 6-sparse 2 x 2 fewnomial system. Note
also that H(, q) has the same roots in (R*)? as (h1(x,y)/y, ha(x,y)/x), which is 5-sparse.

The aforementioned special case of Khovanskii’s Theorem on Real Fewnomials (invoking an
improvement observed by Daniel Perrucci [Per05]) states that an m-sparse n x n fewnomial system
never has more than (n + 1)™~120m=1(m=2)/2 y61)_degenerate roots in the positive orthant R .
This in turn implies that the maximal number of non-degenerate roots in ]Ri of any H(,p q) in the
Haas family is no more than 5184, since we can replace any H(,, q) by a 5-sparse system with the
same roots in Ri (cf. the preceding paragraph).

'For any o €R™, the notation a:=(ay,...,a) and x*:=27" --- 2% will be understood.



Anatoly Kushnirenko, also around the late 1970s, conjectured a significant sharpening of Kho-
vanskii’s bound: Kushnirenko’s Conjecture was the statement that n x n fewnomial systems of
type (m1,...,my) never have more than [[;"_, (m; — 1) non-degenerate roots in the positive orthant
R’ . This conjecture, if true, would have implied that the maximal number of non-degenerate roots
in Ri of any H(yp,q) in the Haas family is 4, thus poinfing to a rather large gap. (It is a simple
exercise to construct 2 x 2 trinomial systems having 4 non-degenerate roots in Ri)

A bit of Gaussian elimination easily reveals that Kushnirenko’s conjectural bound, if true, would
have implied an elegant upper bound of (m — n)" for the number of non-degenerate roots of any
m-sparse n X n fewnomial system [LRWO03, Prop. 1]. Since m-sparse n x n fewnomial systems have
no isolated roots in R’} when m <n [LRW03, Prop. 1 and Thm. 4], the case where n is fixed and m
is large becomes a natural question. Kushnirenko’s Conjecture (or even an upper bound of the form
O(m)”2_s for some € >0) — if true — would have thus been a significant asymptotic improvement
to Khovanskii's bound.

Remark 1.2. Curiously, over a different metrically complete field — the p-adic rationals Qp,
for any fized prime p it is now known that the number of geometrically isolated roots in
Qp is O((m — n)log(m — n))3", for fized n and large m [Roj04]. Also, in the complementary
setting of fized m —n and large n, the number of non-degenerate roots in R’} is now known to be

O(n)™ "1 [BSO6]. o

According to Bertrand Haas (and conversations of the second author with Dima Yu. Grigor’ev
and Askold Khovanskii, on or before September 2000), Kushnirenko saw a simple counter-example
to his conjecture shortly after he stated it in the late 1970’s. Unfortunately, no one ever recorded
this counter-example, or the identity of its author. Fortunately, Haas proved in 2000 [Haa02], via
an ingenious elementary argument, that the system

2190 1,197 — 1.1y

190 +1.12°% — 1.1z,
along with many others with nearby real exponents, has at least 5 roots in Ri. Shortly after, Li,
Rojas, and Wang proved that all 2 x 2 trinomial systems (and, in particular, all systems in the Haas
family) have at most 5 isolated roots in R2 [LRWO03]. The latter trio of authors also significantly
sharpened Khovanskii’s bound for certain other families of n X n sparse polynomial systems.

Haas’ example above was thus the simplest known counter-example to Kushnirenko’s Conjec-
ture, until the present paper.

Remark 1.3. [t is interesting to observe that the existence of a pair of real bivariate polynomials
F:=(f1, fo) — with fi a trinomial and fo a tetranomial — having more than 6 isolated roots in

R%r, is still an open problem. The maximal number is known to be at least 6, and no larger than 14
[LRW03, Thm. 1, Assertion (a)]. ©

1.2 Main Results
1.2.1 New Counter-Examples and the Probability of Finding One

We give a new family of counter-examples far simpler than that of Haas, and announce what appear
to be many more such families. In particular, while Haas found a pair of trinomials of degree 106
(and many more of higher degree), we given an explicit cell in R? which is naturally identified with
an infinite family of pairs of trinomials of degree 6. We have also found experimentally 49 other such
cells (consisting of 2 x 2 systems of trinomial of even degree < 106) which are all counter-examples
to Kushnirenko’s Conjecture as well, but we focus here on the simplest.



Proposition 1.4. Let E;CR? denote the set of (a,b) such that H 4,4y has at least 5 non-degenerate
isolated roots in the positive quadrant. Then Eq is open and symmetric about the line {a =b}. B

Theorem 1.1. Following the notation of Proposition 1.4, E3 is non-empty (and in fact star con-
ver?). In particular, (2, 4) € B3, and thus the 2 x 2 system ( 2 + g‘llyd vy, y° + 3 44 23—z ) has

317 31
exactly 5 roots, all non-degenerate, in Ri.

We point out that while our first verification of our simplest counter-example was done via Grobner
bases (on the computer algebra system Maple), we present here a novel (and simpler) numerical
verification via Smale’s Alpha Theory [Sma86, BCSS98].

Our next result reveals that for small d, it is highly unlikely that a random choice of (a,b) will
yield H,p 4) as a counter-example to Kushnirenko’s Conjecture.

Theorem 1.2. Following the notation of Proposition 1.4, E1 and Eo are empty, and 0 < Area(Es) <
5.701 x 10~7. In particular, letting a and b be independent identically distributed standard real
Gaussian random variables, Prob[(a,b) € B3] <1.936 x 107°. Finally, let o be the smallest positive
root of the univariate degree 7 polynomial C(a), which we define as

823564528378596a” — TOLTO0647A66353924° — 1951340640115089664° — 6686510150827503360 — 199088095692953160° ~ 5649879486073500000% + 2302425241718 750000 - 8620460470736328125,
and let B <~ be the two smallest positive roots of the univariate degree 36 polynomial A(a) in the
Appendiz. Then the boundary of Es consists of exactly 4 convex arcs, meeting exactly at 4 vertices:

1 wsor |1 | VB | ¥
el v [v) [95])
To 10 decimal places, the preceding coordinates are

{1.4176759490 [ﬂ 1.4195167977 [ ] [

1.4179051055| |1.4182147696
1.4182147696| * | 1.4179051055

This paucity of extremal examples can be visualized most easily by plotting the regions in the space
of coeflicients that yield H, 4) with a given number of roots in ]R2 3 Below is a sequence of 4 such
plots (for d=3), drawn on a logarithmic scale and successively magmﬁed up to a factor of about
1700.

7

The small red (or grey) diamond-like region on the right-most plot is E5. The connected components
of the complement of the underlying real curve are regions on which the number of roots of H, 3)
in R?2 — as a function of (a,b) — is constant (see also the discussion after the proof of Theorem 1.2
in Section 5 below). In particular, the real curve we see above is the real part of an A-discriminant
variety — a tool (reviewed in Section 2 below) underlying our final main result.

®Recall that a set S C R™ is star convex iff there is a p € S such that for all = € S, the (closed) line segment
containing p and z is contained in S as well.

3The fact that systems in the Haas family have no roots on the coordinate cross, other than the origin, guarantees
constancy (if we vary the coefficients while avoiding singularities) of the number of roots in each quadrant.



1.2.2 New Counts for Topological Types and Discriminant Chambers

d—1
2
components [Har76], determining the possible nestings of these ovals  a piece of the first part of

Hilbert’s famous 1622 Problem [Kal03] — is quite complicated. In more general language, this is
the determination of possible diffeotopy types of such curves.

Recall that while a smooth, real, degree d projective plane curve has at most 1 4 ( > connected

Definition 1.5. Recall that a diffeotopy between two sets X, Y CR"™ is a differentiable function
H :[0,1] x R™ — R"™ such that H(t,-) is a diffeomorphism for all t€[0,1], H(0,-) is the identity
on X, and H(1,X)=Y. Equivalently, we simply say that X andY are diffeotopic. ¢

Note that diffeotopy is a more refined equivalence than diffeomorphism, since diffeotopy implies an

entire continuous family of “infinitesimal” diffeomorphisms that deform X to Y and back again.

Returning to nestings of ovals of real degree d projective plane curves, an asymptotic formula of e

is now known [OKO00], and the exact number is currently known (as of late 2006) only for d <8.
Via our techniques here, we can study diffeotopy types in a dramatically different setting.

Definition 1.6. Given any n-variate m-nomial f, its support (or spectrum) — written Supp(f)
— s its set of exponent vectors. Also, given any k x n fewnomial system F = (f1,..., fx), let
Supp(£') :=(Supp(f1), ..., Supp(fx)). Finally, we let ZL(F') (resp. Zgx(F')) denote the set of roots
of F in RY (resp. (R*)").

Given ACZ"™ with #A=n+ 3, we let @ denote its convex hull, and make a mild assumption
that will be removed in future work (see, e.g., [BRS06, Sec. 3.2]): To avoid certain technicalities
involving topological changes at infinity, we assume that the configuration A is generic in the sense
that the intersection of A with each facet* of Q consists of exactly n points. In particular, it
is a routine exercise in polynomial/linear algebra to show that when the points of A are chosen
uniformly randomly from [—s, s|” N Z™, the failure probability of our genericity hypothesis decays
like O(1/s™) as s — +00.

Theorem 1.3. For any fired A C Z" with #A=n + 3 and satisfying the genericity assumption
above, there are no more than (10 4 6n + n?) <16 + 8n +n3 + CZT+3 “(n+2)2%n+ 4)2) diffeotopy

types for any smooth Z%(f) with Supp(f)=.A. In particular, the preceding bound (a) is no larger
than %(n +4)8, and (b) is completely independent of the coordinates of A.

In contrast to the situation for degree d plane curves, it is interesting to note that in our n-variate
(n 4+ 3)-nomial setting, the number of possible diffeotopy types is much closer to the maximal
number of compact connected components of Z, (f): The latter number was recently shown to be
no greater than L%J [BS06]. In view of Theorems 1.2 and 1.3, it thus appears that the intricacies
of distinguishing attainable topological types for Z(f) — for an f with support ACZ"™ — might
begin at #A=n + 3.

In particular, for #4=n+1 (resp. #A=n+2), there are at most 2 (resp. 3) smooth diffeotopy
types for Z,(f). The latter topological bounds are respectively proved in Section 3.2 and Theorem
2 of [BRS06], where the resulting algorithmic implications are pursued in much greater depth. We
are unaware of any other earlier published explicit bounds — depending solely on n and #A4 —
for the number of topological types of real fewnomial zero sets. That there are any such bounds
at all is already a non-trivial fact, first observed by Lou van den Dries around the 1990s via
o-minimality (see, e.g., [vdD98, Prop. 3.2, Pg. 150]). Thierry Zell has informed the authors that

4
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results in [GVZ04] (on Pfaffian functions and quantifier elimination for fewnomials) appear to imply
an upper bound of nO®*)20(n") for the number of corresponding smooth topological types in our
fewnomial setting above.?

Our polynomial bound above is thus a great improvement. It is also likely that our bound above
can be improved even further: the main example we explore in this paper has n =3 and just 15
representative chambers, even though the underlying discriminant has over 58 monomial terms.

As a consequence of our last theorem, we get a constant upper bound for the number of smooth
topological types of families of real algebraic surfaces defined by “honest” hexanomials.

Corollary 1.4. Fiz ACZ3, satisfying the assumption preceding Theorem 1.3 and with cardinality
6. Consider the family of polynomials g with support A, which we will identify with (R*)S. Then
the number of smooth diffeotopy types of any such Zg(g) is no more than 237920. B

Theorems 1.3, 1.1, and 1.2 are respectively proved in Sections 3, 4, and 5. The main underlying tools
are an important recent parametric formula for certain A-discriminant varieties [DFS05, Prop. 4.1], and
recent advances in quantitative estimates for sheared binomial systems (cf. Section 2) [LRW03, BS06].

2 Background on A-Discriminants

The standard reference for A-discriminants is [GKZ94]. For our purposes, we will modify a few
notions, present motivating examples, and quote some more recent results as well. But first, let us
recall the following notation (see [Loe91] or [GKZ94, Ch. 1, 9-11] for further background).

Definition 2.1. Given any A={a1,...,a,,} CZ" of cardinality m, we let X4  the (projective)

toric variety associated to A — be the closure of the parametrized subvariety
{[t 2o t9m] | t=(t1,...,t,) €(C*)"} of PE . Finally, we define V4  the A-discriminant
variety — to be the closure of the set of all [c1 : -+ : ¢y € Pg_l such that the hyperplane

{121+ -+ + emzm =0} intersects a regqular point of X 4 with a tangency. ©

V 4 also happens to be the closure of those [c1 : -+ : ¢ EIP’E:”*1 such that the complex zero set of
Yok, cix® possesses a singularity in (C*)" [GKZ94, Prop. 1.1].

Example 2.2. It is a simple exercise to verify that V12 is the set of all [a:b:c] E]P’(QC such that
the quadratic polynomial f(x):=a + bx + cx?® has degree <1 or a double root in C. In particular,
Vio,1,2} s the projectivized complex zero set of b2 — 4ac, and one can check that the affine real zero
set of b* — 4ac in R? is a double cone. Topologically, IP’%Q N Vyo,1,2) @8 thus a circle. ©

In particular, V 4 is an irreducible algebraic variety defined over Z (see, e.g., [GKZ94, Prop. 1.3,
Pg. 15]), and this motivates the following important definition.

Definition 2.3. When codimV 4=1, we define (up to sign) the A-discriminant, A4 €Z[cy, ..., cpl,
to be the (irreducible) defining polynomial of V 4. Otherwise, we set Ay:=1. ¢

Example 2.4. Continuing our last example, we can take Ay 2 =b? —4dac. In particular, observe
that for real (a,b,c), f has exactly 0, 1, or 2 roots according as Ay 1,9y(a,b, c) is negative, zero, or
positive. Note also that the classical quadratic formula tells us that the roots of f are differentiable
functions of the coefficients (a,b,c), provided [a :b: gV g 19y. ©

5 As this paper was being finalized, Saugata Basu informed the authors that a similar (exponential) bound is likely
also provable via [BV06], but with the advantage that the support can be varied when n and #.A4 are fixed.



Example 2.5. For A := {(0,0),(1,0),(2,0),(0,1)}, it is easily checked that V 4 is exactly

’

{la:b:c:d]|b* —dac=d=0} and thus Ag=1. o

A-discriminants are central in computational algebraic geometry, containing all known mul-
tivariate resultants as special cases (see, e.g., [GKZ94, Prop. 1.7, pg. 274]). More to the point,
they are notoriously difficult to compute: (1) detecting just their vanishing is NP-hard already for
ACZ? [Pla84, Koi97], and (2) A-discriminants can have many monomial terms, already for AC Z
and #A=4 [RY05, Sec. 1.2] (see also Example 2.9 of the next section).

Relevant to our applications, the fact that the vanishing of A4 determines when certain hyper-
surfaces possess singularities readily implies that the real complement of V 4 can be used to encode
the number of real roots of certain polynomial systems. In particular, let us call any connected
component, of IP’gA_l\V 4 a(n) (A-)discriminant chamber. Lemma 2.22 of Section 2.2 below
(see also [GKZ94, Ch. 11, Sec. 5]) relates the number of A-discriminant chambers to the number
of smooth topological types attainable by the real zero sets of certain families of sparse polynomial
systems. Understanding discriminant chambers is thus a feasible route toward understanding the
maximal number of real roots of F.

Remark 2.6. When #A€{n+1,n+ 2}, A-discriminant chambers turn out to have a very simple
structure: just one (resp. at most two) chamber(s) for #A=n+ 1 (resp. #A=n +2) [GKZ9/,
Prop. 1.8, Pg. 274]. Hence our focus on #A=n + 3 throughout this paper. ©

2.1 Studying A-Discriminant Chambers

In what follows, we will always assume that A is a subset of Z", of cardinality m, that affinely
generates Z". We will also frequently assume that O € A; in which case A affinely generating
Z" is equivalent to Z™ being generated by the set of all integral linear combinations of the remaining
vectors in A. In general, these assumptions can easily be enforced by merely translating A and, if
necessary, applying the Hermite factorization [Sto98] for integral matrices. A-discriminants happen
to be invariant (modulo a permutation of coordinates) under affine transformations of A that
are injective and integral [GKZ94, Prop. 1.4, Pg. 272]. For now, let us observe a simple example.

Example 2.7. Note that while A:={3,30,57} does not affinely generate Z or contain the origin,
this A is a shifted multiple of a set that does both: {0,1,2}. In particular, the polynomial
az®” + b0 + ca® has a degenerate root in C* iff the polynomial ax? + bx + ¢ has a degenerate root
in C*. Thus, we clearly have V330571 =V 01,2} and Az 30571 =28(0,1,2}- ©

air - Qim
Remark 2.8. We will frequently abuse notation by also identifying A with the n x m matriz | : -.. ]
aig an1 - Anm,
where a; = [ : ] for all i. Also, given vectors vi, ..., v, € R"™, we will let [v1,...,v,] denote the
Ani
n X m matriz whose j% column is vj. Finally, we will use the notation Zlotvml (29, ..., 2"m). o

The combinatorics of exponents will thus be particularly important throughout our
development. Continuing this theme, we will define notions useful for simplifying discriminant
chambers. However, before going into further definitions, let us first motivate the need for simpli-
fication via a more intricate A-discriminant example.

6 0 ) 0 3 1
Example 2.9. Suppose A := { [0] , [3] , [1} , |:6:| , [0} , [0} } The real part of V4 is at
0 0 0 1 1 1

the heart of Theorem 1.1, and it is interesting to observe that A4 happens to be rather large:
Ax(l,a,—1,1,b,—1) is (up to sign)...
1102507499354148695951786433413508348166942596435546875—516440160351044111358464119738658142157348733522052 a3



+ 54 additional monomial terms of comparable size
—24519711093887016527058411574716512472434688 b*6439 + 82754024941868680778822139064668229594467072 b*7 33,
In particular, A4 (1, %, —1,1, %, —1) #0, and (via the proof of Lemma 2.22 below) this is equiv-
alent to the fact that Hy4/3144/31,.3) has no degenerate roots. In any event, it should be clear that

we need a more efficient means of addressing V 4. ¢

A beautiful recent (re)discovery is the fact that while A 4 can be unwieldy, V 4 always admits a
compactly expressible parametrization: the Horn-Kapranov Uniformization (see also [Kap91,
PTO05]).

Theorem 2.10. [DFS05, Prop. 4.1] Given A:={a1,...,a,}€Z", the discriminant locus V 4 is
exactly the closure of
{fwat™ : oot upt®™] [ ui=(u, ..., uy) €C™, Au=0, > 7" u;=0, t=(t1,...,t,)e(C)"}. A

Example 2.11. Continuing Example 2.9, it is easily checked that the set of vectors {(u1,...,ug)}

needed to form the parametrization from Theorem 2.10 is a vector space with basis
{(—2,35,-33,-12,0,12), (=2, 11, -9, —4,4,0)}.

We thus obtain that, in spite of the huge formula for A4(1,a,—1,1,b, —1) we saw earlier, VAC]P’(%

is exactly the closure of

{[=@X+2)t5 : (35A+ 11)t3 : —(33X + 9)t3 : —(12X + 4)t1t5 : 46183 : 12Mt1t0] | AEC, (t,t2.t3)€(C*)P}. ©

Computationally, however, we will need to express V4 in an even more efficient manner. In
particular, if we are studying the topology of the zero set of a polynomial as we vary its coefficients,
we should certainly take advantage of the various homogeneities that preserve the topology of the
underlying zero set.

Example 2.12. Returning to Ezamples 2.9 and 2.11, note that the set of exponent wvectors of
g(z,y,v) =129 + c2y® + c3y + v(cay® + 523 + cox) is eractly A, and that the topology of Z%(g)
is preserved under nonzero scalings of the coefficient vector (ci,...,cs) € (R*)®, and nonzero scal-
ings of the variables v,y,z. In particular, if we would like to find (o, 3,7v,) € (R*)* such that
Sg(ax, By,yv) =2% + ay® — y + v(y% + bax® — x) for some real a and b, then we must clearly solve
the binomial system

6 0 0 1

0o 1 6 0
o o 1 1
11 1 1

(a, B,7,0) } = (cl_l,—cgl,cll,—cgl). By multiplying and dividing equations (mimicking
Gaussian elimination), one can then derive that

—1

6 6 5 6 6 6 5 3
— 1 6 o 3 —|1 6 o o
a:C_2 <_C3 C4 _CG) o 1 1 o and b:Z_? <_03 C4 _66) o 1 1 1]

c1 c1 ‘e’ c1 ’'c’ e

6001
-6 —6 —5
Note in particular that the determinants of the matrices g (1] ? ? and {1 6 0} are both odd
0o 1 1
1111
and differ only in sign. So one can check by hand (or via Lemma 2.13 and Proposition 2.17 below)
that one can indeed always find such real (a,b). More to the point, we have reduced the study of
Zx(g) from 6 to 2 parameters. o

Lemma 2.13. Suppose A={a1,...,a,} CZ" affinely generates Z" and a1 = O. Then there are
i1y, i, €{2,...,m} such that det[a;,,...,a;,] is odd. B

Definition 2.14. Suppose A={a1,...,am} CZ" affinely generates ", has cardinality m>n + 2,
and a1 =0. We call any set C={iy,...,i,} with det[a;,,...,a;,] odd as in Lemma 2.13 above, an
odd cell of A. For any n x m matriz B, we then let Bo (resp. Ber) denote the submatriz of B



defined by columns of B with index in C' (resp. {2,...,m} \ C). For any vectors v,w e (C*)™, let

us denote their coordinate-wise product by v -w:=(viwi, ..., VmWy). Also let T be the multivalued®
—~AZ ' Ac
function from (C*)™ to (C*)™~ "1 defined by T'(y) := yy%’ . (i’/—f) re Finally, we define the

reduced A-discriminant variety, V. 4CC™ "L, to be the closure of
{T(w) |u:=(ut,...,um)€(C*), Au=0, Y " u;=0},
and call any connected component of (R*)™ "1\ V 4 a reduced (A-)discriminant chamber. ¢

Remark 2.15. Since we always implicitly assume that an odd cell has been fixed a priori for our
reduced A-discriminant varieties, T in fact restricts to a single-valued function from (R*)™ to (R*)™ "1, o

Example 2.16. Continuing Fxamples 2.9, 2.11, and 2.12, let us shift our original A slightly to
-6 —6 —6 —3 —5

instead work with A = [O 3 1 6 0 0 |. (The underlying A-discriminants are left
o 0o o 1 1 1

unchanged thanks to affine invariance [GKZ94, Prop. 1.4, Pg. 272].) As observed in Example 2.12,
C =1{3,4,6} is an odd cell for A. So Ac is then the 3 x 3 matriz from Example 2.11, Acr =
—6 —3 1 33/35 —12/35 upul2/®® u5u12/35
3 0| AC Acr = 12/35 2/35 |, and thus F(U) - 2/35 336/35 12/355 12/35 23/35 33/35 | -
0 1 —12/35 33/35 Uyt Uz Uy Up Uy Ug
Defining 01, ...,0s respectively as the polynomials —2X — 2,35\ + 11, =33\ — 9, =12\ — 4,4, 12),
and letting W(N\) = (1 (N),Y2(N) =T (l1(N), ..., (), we thus obtain that V 4 is the closure of
{ON) [ A€C, &(A) -+ Ls(N) #0}. o

Let us now consider how the topology of Zz(f) changes as f ranges through A-discriminant
chambers. First, note that it is easy to show that for any Z C (R*)" and any coordinate reflection
o:R"—R" 7 and o(Z) are not only diffeomorphic but diffeotopic. With just a little more work,
one can then show the following:

Proposition 2.17. Suppose A={a,...,an} CZ" affinely generates Z™, has cardinality m>n—+2,
and a1 =0. Also let C be any odd cell of A, let f(x):=> ", 0z with § :=(01,...,0m) € (R*)™,
and let § € (R*)™ be the unique vector with 6, =1, éc = (1,...,1) and 5cr = T(8). Finally, let
f:zzzil 5;x% and let Conv.A denote the convex hull of A. Then:

1. 1" induces a surjection from the set of connected components of

]P’ﬁgfl \(Vau{[yr:--: ym]EPﬁfl ‘ Y1 ym=0})
to the set of reduced A-discriminant chambers.

2. If, for all facets Q" of ConvA, we have that #(AN Q") = n, then Z}(f) and Zi(f) are
diffeotopic. Furthermore, for any fi and fo with fi and fo lying in the same reduced A-
discriminant chamber, Z3(f1) and Z(f2) are diffeotopic. B

Proposition 2.17 follows easily from a routine application of the Smith normal form and the implicit
function theorem. In particular, the crucial trick is to observe that exponentiation by A¢, when C
is an odd cell, induces an automorphism of orthants of (R*)". Our assumption on the intersection
of A with the facets of Conv.A ensures that any topological change in the zero sets of f and f (in
the underlying real toric variety corresponding to Conv.A [Ful93]) occurs within (R*)".

Remark 2.18. [t is also easily checked that our genericity assumption (on the intersection of A
with the facets of ConvA) implies that (a) the nullspace of A is not contained in any coordinate
hyperplane, and (b) when #A=n+ 3, one has that V 4 N R? is not contained in any line. o

5The multiple values arise from the presence of rational exponents, and the number of images of a point is always
bounded above by a constant depending only on A.



Definition 2.19. Following the notation of Definition 2.14, given any § € (C*)™, let &' be the
unique vector with 8 :=1, 6, =1, and 5y, =dcr. We then define the reduced A-discriminant to
be ZA(&C/) ::AA(él). <

2.2 Going Beyond One Polynomial Via the Cayley Trick
We will need one last construction in order to apply A-discriminants to systems of equations.

Definition 2.20. Let e; denote the it standard basis vector of R®. Then, for any Ay, ..., A, CR",
we call Cay (A1, ..., Ax):= (A1 x{0}HU(As x{ept1})U- - -U(Ag x{€nsr—1}) the Cayley embedding
of (A1,..., Ar). We also define the Newton polytope of f to be Newt(f):=Conv(Supp(f)) and,
for any compact set BCR™ and w= (w1, ...,w,) ER™, we define B the face of B with inner
normal w — to be {(z1,...,xn) € B | ziwy + - - - + xpwy, is minimized}. ©

Example 2.21. Taking (A1, As) to be the support of any H,p,3) tn the Haas family, observe that
Cay (A1, Az) is exactly the A from Examples 2.9-2.12. ©

Lemma 2.22. (See, e.g., [GKZ9/, Prop. 1.7, Ch. 9 and Pg. 380].) Suppose fi, fo € R[x,y] are
bivariate polynomials with respective supports Ay and Az, and let F:=(f1, f2). Assume also that
for all we€R? the pair of faces (Conv(Ap)™, Conv(A2)"”) never consists of two parallel edges. Then
— iddentifying the coefficient of x® in f; with the point (a,0) or (a,1) of Cay(A1, A2) according as
iis1 or2 the number of isolated real roots of F:=(f1, f2) in any open quadrant is constant
on any discriminant chamber of Cay(A1, A2).

Proof: Fixing an ordering on A; and As, let ¢ denote the coefficient vector of any f; with
support A;. Also let V4, 4,) denote the closure in PgAH#ATl of those [c(l) : 0(2)} such that the
corresponding F:=(f1, f2) has a degenerate root in (C*)2. Via [GKZ94, Prop. 1.7, Ch. 9 and Pg.
3801, V(A1 A) is exactly vCay(A1 Az)-

Note also that by our assumption on the (Conv(A;)", Conv(Az)") (using w € {e1, e2}), the only
possible isolated root of F' on the coordinate cross is (0,0). To conclude, we need only to observe
that if [c(i)] EIP’Z%AFI \ V4 and ¢ has no zero coordinates for all i€ {1,2}, then all the roots of
F in the toric variety corresponding to Conv(A;) + Conv(Ag) lie in (C*)2. Thus, along any fixed
path within any fixed Cay(A;, As)-discriminant chamber, the roots of F' are continuous functions
(with bounded range) of the coefficients. B

3 The Proof of Theorem 1.3

The reduced A-discriminant variety has many interesting properties that we will exploit. Before
proving Theorem 1.3, however, we will need an important recent bound on the number of real roots
of certain structured polynomial systems.

Definition 3.1. Suppose (1,....0; €R[A1, ..., \y] are polynomials of degree <1. We then call any
system of equations of the form S := (1 — T Ebl’i()\l, AU ¥ P J Ebk’i(/\l, e, /\k)>,

i=1"1 i=1"%
with by € R for all 4,7, and the vectors (bi1,...,b14),...,(bg1,..., bk ) linearly independent, a
k x k sheared binomial system with j factors. We also call each ¢; a factor of the system.

A sheared binomial system is referred to as a Gale Dual System in [BS06].c

Note that our definition implies that j > k. For j=k, it is easy to reduce any k x k sheared binomial
system with j factors to a k£ x k linear system, simply by multiplying and dividing equations
(mimicking Gaussian elimination). For j > k, sheared polynomial systems become much more
complicated.
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Theorem 3.2. The number of non-degenerate roots N\€ R¥ of any k x k sheared binomial system
with n + k factors, and all factors positive, is bounded above by:

1. [LRW03, Lemma 2] n+1 (and the same bound applies if we also count degenerate isolated roots
with all factors positive), for k=1,

2. [BS06] (2 + 3)20k=DE+D/2pk - for all k> 1.

In particular, e® + 3~10.38905610. W

We will also need one last important result before our main proof. Let W(X) = I'(£1(A),. .., 0n(N))
be the dense parametrization of a reduced A-discriminant variety associated to an odd cell of A as
in Definition 2.14. We can in fact consider this map to be defined over IP’(%: by instead working with
the homogenizations ¢;([A\1 : A2]) :=a;\1 + Bid2. Also, recalling Definition 2.19 and the fact that
A4 is an irreducible defining polynomial for V 4 with integer coefficients, let Z be the finite set of
points of V 4 at which the gradient of A 4 vanishes.

Lemma 3.3. With the notation above, if W([A1, o)) € (R*)> N (V4 \ Z) then [\ : Xo] can be
chosen in Pk. In other words, (R*N'V 4) \ W(PR) is finite.

Proof of Lemma 3.3: The proof is an easy consequence of the fact that ¥ defines a multivalued
function (univalued from the real points, as we have already noted in Remark 2.15) which is an
inverse to the logarithmic Gauss map G : (C*)2N (V4 \ Z) — P¢:

) 9
G(y) = |y —A Cyg—A
() Vg, AY) 12 95 AY)

This is proved as in [CD06, PT04]. Now, since G has rational coefficients, G(y) has real coordinates
for each real point y € (R*)2N (V4 \ Z). B

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3: Let 74 denote the toric variety corresponding to the convex hull of A
[Ful93]. Note that by our assumption that every facet of A corresponds to the vertices of a simplex,
the complex zero set of any f with Supp(f)=.4 is thus always nonsingular at infinity, relative to 74
(see, e.g., [BRS06, Sec. 3.2]). By Proposition 2.17, it then suffices to show that our desired bound
applies to the number of reduced .A-discriminant chambers. Note also that by Proposition 2.17
and Lemma, 3.3, the real part of the reduced A-discriminant variety — R? NV 4 — must be the
union of a finite set of points and the closure of {¥(A\) | A € R, £1(A)---lhy3(X) # 0}, where

T(N) = (P1(N), (V) = (1‘[;?;13 IOV § (s 4’“@)), and 01, . .., lyy3 are univariate polynomials

in A\ of degree <1 Let Q C R? denote the aforementioned closure. Since isolated points do not
disconnect connected components of the complement of a (locally closed) real algebraic curve,
it thus suffices to focus on . In particular, the connected components of (R*)2\ © are (up to
the deletion of finitely many points) exactly the reduced .A-discriminant chambers. Note also, by
observing the poles of the v;, that €2 is the closure of the union of no more than n + 4 arcs, i.e.,
homeomorphic images of the open interval (0, 1).

To count the number of connected components of (R*)?\ Q, we will use the classical critical
points method [CG84], combined with our more recent tools. In particular, let us first bound the
number of x-axis intersections, cusps, vertical tangents and vertical asymptotes, and nodes of §2
in R2. (These constitute all possible critical points of the orthogonal projection mapping Q to the
first coordinate axis.) Let us call the numbers of these respective objects My(A), Mi(A), Ma(A),
and M3(A), and proceed with bounding their number from above.
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‘x—axis Intersections:‘ Clearly, € intersects the z-axis iff ¥9(A) = 0, and the latter occurs iff a
monomial in the ¢; vanishes at some A € C U {+oo}. Also, by Theorem 2.10 and Definition 2.14,
the degrees of the numerator and denominator of ¥s are equal. So there are clearly no more than
n + 2 solutions to 2(A) =0, and thus My(A)<n + 2.

‘ Cusps (and certain isolated real points): ‘To count cusps, it suffices to bound from above the num-

ber of complex A such that % = % =0. (Note also that for such a A\, U(\) could also be an
isolated real point of the real part of V4 off of .) In particular, via the product rule, and by
dividing out by suitable monomials in ¢1(\), ..., f,+3()), the preceding equation reduces to a uni-

variate system of the form 2?213 bll;ﬁ\())‘) = Z?:Jrl?’ bQZ?%\()’\) = 0. We can then multiply through by

l1(A) -+ €p43(A) to obtain a univariate polynomial of degree n+2. Furthermore, it is easily checked
that the maximal number of distinct cusps as A — +oc0 is one, and thus M;(A)<n + 3.

‘Vertical Tangents (and vertical asymptotes): ‘ Here, we proceed essentially the same as for cusps,

but with only one derivative. However, A€ {£oo} can possibly yield two distinct vertical tangents.
So Ms(A)<n+ 4. Note also that this count includes all cusps.

Here, we need to bound the number of 2-sets {A\, X'} (so A # X) with W(X\) = ¥(\)
and A\, N €R U {—o00, +00}. Counting these real pairs then reduces to counting the number of real
solutions of a 2 x 2 sheared binomial system — with <2(n+3)=2n+6 factors — where no factor is
zero. Theorem 3.2 counts such solution satisfying certain sign condition for the ¢;, so let us carefully
count the number of (nonzero) sign combinations possible for the vectors (¢1(A),. .., ¢,+3())) and
(01(X), ..., lot3(X)): Clearly, each such a vector admits at most (n + 4) possible (nonzero) sign
combinations, since the sign of any ¢; is constant to the right (or to the left) of its unique real
root, and there are no more than n + 3 real roots for our ¢;. Thus, there are at most (n + 4)?
possibilities for the (nonzero) sign vector of (€1(A), ..., Lh4+3(A),€1(N), ..., €y13(N)). So, combining
with Theorem 3.2, and noting that there are <(2n +4) + 2 factors, we thus clearly obtain no more
than (n+4)2- (€2 +3)-272. (2n+4)? pairs (A, ) €R? with W(\)=V¥(X\) and A# ). Note also that
there are infinitely many solutions of W(\) =W()\’) of the form A= X, but these are non-isolated
and thus not counted by Theorem 3.2. So there are no more than 62+3(n + 2)%(n + 4)? nodes

2
arising from 2-sets in R?, since our underlying sheared system is symmetric.

Now, should a AeR yield U(\)=¥(+o00) as a node (for some fixed choice of sign), then ¢ (\')
must clearly have a well-defined nonzero limit as X' — £o0, since we have already counted z-axis
intersections and vertical tangents. We are thus reduced to counting the number of real roots of a
univariate sheared binomial, with no factor zero. By Theorem 3.2 again (with <(n+2)+1 factors),
and recalling our last observation on the sign vector of (¢1,...,%,+3), we then directly obtain no
more than (n + 4)(n + 2) nodes arising from (A, \') € (R U {£oc})? \ R%. (It is also easily checked
that should (d-oc, Foo) yield a node, then there is another pair (A, \') €R? giving the same node.)

In summary, we thus obtain no more than 62;'3 (n+2)2(n+4)2+ (n+2)(n+4) nodes, and thus

Ms(A) < (n+2)(n +4) [1+ = (n—l—2)(n+4)].

‘Back to Reduced Chambers... ‘ To count the number of connected components of (R*)?\ €2, let us

now introduce vertical lines L1, ..., Ly exactly at the locations of the y-axis, the z-axis intersec-

tions, the cusps, the vertical tangents, and the nodes of 2. Clearly, any connected component of
T:=(R*)?\ (QULU---ULy)

is contained in a unique connected component of (R*)?\ €. So it suffices to count the connected

components of T'. To do the latter, observe that N <1+ My(A)+ Ma(A)+ Ms(A) (since cusps were

already counted among vertical tangents via our technique above), and that our lines {L;} thus di-
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vide (R*)? into no more than 14N =141+ (n42)+ (n-+4) + (n+2)(n+4) [1 + 248 (04 2)(n+ 4)]

=16+ 8n +n? + # - (n+2)%(n + 4)? vertical strips.

Now note that within the interior of each strip, ) is smooth, does not intersect the z-axis,
and has no vertical tangents. So to count components of 7" within any particular vertical strip, we
need only bound from above the number of non-degenerate intersections of Q U {z9 = 0} with a
vertical line distinct from L, ..., L. This clearly reduces to counting the number of real roots of a
binomial in n 4+ 3 univariate linear forms. Via our earlier sign condition count, and by Theorem 3.2
once again (with <(n + 2) + 1 factors), the desired upper bound is then 1+ (n + 4)(n + 2). Thus,
each of our vertical strips contains no more than 2 + (n + 2)(n + 4) connected components of 7.
Taking into account the number of vertical strips, we thus finally arrive at an upper bound of

(10 4 6n + n?) (16 +8n+n?+ S (n+ 2)2(n+4)2)
for the number of connected components of 1", our bound is proved.
To conclude, note that Assertion (b) follows immediately from our bound, and Assertion (a)
follows from merely comparing coefficients in the underlying polynomials. H

Remark 3.4. The diffeotopies we have used above are thus obtained by (i) following a path in
a reduced A-discriminant chamber, and (ii) performing a coordinate reflection. One could cer-
tainly allow a broader class of diffeotopies, and thus (potentially) greatly reduce the bound we have
Just proved. Diffeotopies obtained solely via (i) are analogues of what are sometimes called rigid
diffeotopies in other settings (see, e.g., [OK00]). <

Remark 3.5. Isolated points can in fact occur in the real part of a reduced A-discriminant
0O -6 —6 —6 —3 —5

variety. For instance, taking A= [0 3 1 6 0 o0 ] (as in Example 2.16), we will see in
o o o 1 1 1

the next section (and the Appendiz) that R2NY 4 is the disjoint union of a connected finite union of
smooth arcs and ezxactly 3 isolated points (located respectively in the +—, ——, and —+ quadrants).
This in turn implies that the real part of the (non-reduced) discriminant variety V 4 has connected
components of codimension at least 2, even though V 4 is itself codimension 1 and irreducible over C. ¢

4 The Proof of Theorem 1.1

Before going into our main proof, let us first review an important criterion for an “approximate”
root, to converge quickly under Newton iteration to a true root of a polynomial system.

Definition 4.1. [Sma86, BCSSI8] Given any analytic function F' : C* — C", we let F' denote
its Jacobian matriz, and define the Newton endomorphism, Np : C" — C" to be the function
Np(2):=z— F'(2)"'F(z). Also, given any zy € C", we define the sequence of Newton iterates of
zo (under F) to be (2n)nenufoy where zni1:=Nrp(zn) for alln>0. Finally, given any multi-linear
operator L : (CMN)* — CN and v=(v1...,u5) €CN, we let |v|:=+/|v1]2 + - + [oy|? denote the

., .. L(vt,... ok
usual Hermitian norm and let |L| be the multi-linear operator norm max w
(W1,...0F)e(CN\O)* [v1 - [v"]

o

Definition 4.2. [Sma86, BCSS98] Following the notation of Definition 4.1, we define the invariants
B(F, 2) =z — Np(2)| = |F'(2) 1F(2)|, ¥(F. 2) i=supgos | 5 F'(2) LF® ()Y and o(F, 2) =
B(F, 2)v(F, z). Also, let us call a point zy € C" an approximate root of F' iff the Newton iterates

n—1
of zo under F satisfy |¢ — z,| < (%)2 |¢ — 20| for all n>1, for some true (and non-degenerate)
root (€C™ of F. ©
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Remark 4.3. Note that F'(z) " F® is a symmetric k-linear operator from (C™)* to C", and that
the underlying coefficients can be identified with k order partial derivatives of the f; constituting
F. In particular, observe that when F' is a polynomial system, the supremum in the definition of
Y(F, z0) is in fact a mazimum over a finite set with cardinality depending on the degrees of the f;. ©

Note that approximate roots (as defined above) give an efficient, rigorous, and numerically
feasible way to encode true roots: For instance, instead of specifying n (likely huge) minimal
polynomials for an algebraic point ((i,...,(,), and n corresponding isolating intervals, we can
instead simply give an n-tuple (2},...,2%) that is an approximate root. Omne can then extract
arbitrarily high accuracy through a small number of Newton iteration, thanks to Definition 4.2.

There has been much important work on proving useful complexity bounds for this approach
(see, e.g., [CSMPO03]). In the space here, we merely point to [BCSS98| as an excellent beginning
reference. In particular, the « invariant gives a sufficient criterion to guarantee that a given point,
and any point sufficiently near, is an approximate root.

Theorem 4.4. [BCSS98, Ch. 8] Following the notation above, suppose zy€C" satisfies a(F, zp) <

v(ﬁ‘zo) — is an approximate root of F'. Furthermore,

the unique root ¢ of F' to which the Newton iterates of zy converge satisfies |z — | <28(F, zp). B

0.03. Then zy — and any point within distance

The preceding result is sometimes referred to as a (robust) one point estimate, and considerably
strengthens earlier seminal results of Kantorovich, from the 1960s, which relied on invariants defined
over entire regions. We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1: Let H(3) denote the Cayley embedding of the support of any H(, 3y in
the Haas family. Proposition 2.17 and Lemma 2.22 then tell us that we can find E3 by using the
critical points method [CG84], just as in the proof of Theorem 1.3. In particular, for the setting at
hand, this reduces to the following four steps:

1. computing R(a,b) ::ZH(;),)(—Q, —b), i.e., Ays)(1,a,—1,1,b,—1) up to sign

2. computing the partial derivatives of R up to order 2 (needed later to check vertical tangents
and convexity of the underlying arcs)

|

ob

3. isolating those real ap such that there is a real by with R(ag,by) = =0

(a0,bo)
4. computing the number of roots of H(,j3) in each quadrant, at representative choices of (a,b),

picking at least one representative pair from each reduced discriminant chamber

These computations are routine, albeit hours-long, via Maple. So we now summarize the crucial
details.
‘ Steps (1) and (2): ‘ We calculate R by first computing the resultant p (resp. ¢) of hy (resp. hs) and

the determinant of the Jacobian of (hy, h2), with respect to the variable y, where (h1, ho):=H,,3)-

We then compute the resultant, Re Z[a,b], of p and q with respect to the variable z. R is a multiple
of our desired R, and we can isolate R by factoring R and picking out the factor of the correct
degree. In particular, a quick volume calculation (see, e.g., [Roj03, Thm. 4.2.4]) shows that the
degree of R is bounded above by 236, and there is only one such factor of R.

It then turns out that R is symmetric, with total degree 90, degree 47 with respect to each
variable, and exactly 58 monomial terms (each having a coefficient with between 43 and 56 decimal
digits). In particular, up to sign, R(a,b) is the polynomial from Example 2.9, and the full monomial
term expansion of R(a, b) can be downloaded from http://www.math.tamu.edu/"rojas/haas3disc
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Remark 4.5. [t is also interesting to observe that R(a,b) is of the form r(aﬁbfl, bﬁcfl), where r
is a polynomial with total degree 18 and degree 9 with respect to each variable. ¢

Step (3):| Computing those real ay where both R(ag,by) and %‘(a vanish can be done by

0,00)

computing the resultant of (R, %), to eliminate the variable b. The resulting eliminant X (a)
is large, occupying a text file over 3Mb in size, but has just 4 non-monomial factors A*, B*,
C*, and D*, of respective degrees 1260, 70, 35, and 5 — that have real roots. These factors are
respectively of the form A(a®), B(a®), C(a®), and D(a®), for certain polynomials A, B, C, and D
of significantly lower degree: D is exactly the minimal polynomial for the rational number 126981067, C
is the degree 7 minimal polynomial for o, and A is the minimal polynomial for the real algebraic
numbers [ and v (as mentioned in the statement of Theorem 1.2). B(a) is the following quadratic
polynomial:

T T 084 550 1505333500000 5 5T 38738053 08505 ST LSS0 LTS

The critical values are thus the real roots of A*, B*, C*, D*, and there are exactly 16 of them:
2 of which are negative and 14 of which are positive. With a bit more work, it is then easily verified
that the —+ and +— quadrants of R? each contain exactly 2 reduced chambers (each unbounded),
and the entire —— quadrant is itself a reduced chamber. Thus, all the action occurs in the ++
quadrant, and we will need to consider a total of 16 + 2 4+ 1 vertical strips in our application of
the critical points method to our real discriminant curve Q:=R? N vH(g) (two extra vertical lines
coming from the b-axis and the unique a-axis intersection of ). The exact location of our vertical
strips is detailed in the Appendix.

There turn out to be exactly 15 reduced chambers in Ri: exactly 5 that are unbounded and 10
that are bounded. An attractive illustration of the unbounded reduced chambers can be obtained
by computing the logs of the absolute values of the coordinates of the zero set of R in (C*)?, i.e.,
the Archimedean amoeba of R [GKZ94, Cor. 1.8]. In particular, the 5 unbounded reduced
chambers (and the sole bounded chamber adjacent the origin, stretched to unboundedness — by
the logarithm — in the illustration below), each contain exactly one of the white convex regions
below. The remaining bounded chambers thus have images lying inside the shaded amoeba, and
their boundaries are indicated by the darker curve: the image of RQHWH@ under the log of absolute
value map.
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Remark 4.6. The Amoeba Theorem of Gelfand, Kapranov, and Zelevinsky [GKZ94, Cor. 1.8] tells
us that the white convex regions above correspond exactly to the vertices of Newt(R). The fact that
all the facets of the convex hull of H(3) are triangles implies that Newt(R) is actually the image of
the secondary polytope of H(3) under an injective linear map [GKZ94, Thm. 1.7 of pg. 221 and
Thm. 1.4 of pg. 302]. Concretely, this means that the white convex regions also correspond exactly
to the triangulations of H(3), which we have drawn above as well.” o

Step (4):| Now let 7* be the complement of Q U L in (R*)2, where L is the set of vertical lines

located at the real roots of the eliminant X (a) computed in Step (3). Clearly then, each connected
component of 7% is contained in a unique reduced H(3)-discriminant chamber.

Returning to the positive quadrant, exactly one of the reduced chambers there (E3) possesses
H 4,3y with 5 positive roots: all other chambers result in 4 or fewer positive roots. Verifying
this reduces to solving a representative H,3) for each connected component of 7*: there are
125 such systems. In particular, after this sampling of representative points (a, b), we obtain that
FE5 is contained in the union of three adjacent vertical strips, with extreme end-points located
approximately (to 10 decimal places) at {1.4176759490, 1.4195167977}. We also obtain that within
each strip, Ej3 is the region between two smooth curves. This is illustrated below.

FIGURE 4.7: The (a,b) yielding H 4,3y with 5 isolated roots in the positive quadrant lie in the
shaded region E3. The vertices — intersected by the four vertical lines are a
subset of the critical points of the projection mapping V3 onto the a-azis.

The boundary of F3 thus appears to be a subset of the union of 4 convex arcs. More rigorously, it
suffices to show that each of the 7 smooth sub-arcs above, obtained from the parametric formula
of Example 2.16, is convex away from its cusps and nodes. This follows easily from computing the
partial derivatives of the logarithms of our parametric formula and checking signs. So Ej3 is indeed
non-empty, star-convex, and in fact has 4 vertices determined by the polynomials mentioned in the
statement of Theorem 1.2.

To conclude, we need only verify that (44/31,44/31) € Es3. Instead of doing this via symbolic
algebra, let us instead employ Smale’s Alpha Theory, as summarized earlier: Clearly, we need
only check partial derivatives of the h; up to order 6, and a quick computation reveals that any
2= (21, 22) chosen from one of the five following points satisfies a(H44/31,44/31,3), 2) <0.03:

(1 0.584513273807 , 0.818672114695 ) , ( 0.721441819886 , 0.757201442567 ),
(0.740238978217,0.740238978217), (0.757201442567,0.721441819886), (0.818672114695,0.584513273807).

"Truthfully, we drew the mixed subdivisions of the pair (Supp(h1), Supp(hs)), where Hp,3) = (h1,h2). The
latter diagrams can be interpreted as projections of the triangulations of H(3).
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Thus, each of these points is an approximate root of Hy4/31,44/31,3)- Also, since the roots of
H(44/31,44/31,3) are clearly symmetric about the line {z =y}, we need only compute the a-invariant
3 times. So, thanks to Theorem 4.4 (and Proposition 5.1 of the Appendix), we are done. H

Remark 4.8.  Alternatively, we could have simply used any Grébner basis solver to get a rational
univariate reduction for Hyq/31 4431.3)- One could then use Sturm-Habicht sequences [Stu35, Habi8,
Roy96, LMO01] to find (certifiably correct) isolating intervals for the real roots. However, this naive
Grébnerian approach becomes infeasible for higher degree examples (cf. Note Added in Proof). ¢

5 The Proof of Theorem 1.2

Here, we need only continue the development of the proof of Theorem 1.1 one step further: Since we
already observed and proved the structure of the boundary of Fs in Section 4, we need only verify
that £ and Eo are empty, and make two estimates concerning the size of F3. The emptiness of
E» follows from essentially the same techniques as we used for E3, but the resulting computations
(which we omit) are much simpler. The emptiness of E; follows directly from Bézout’s Theorem:
H,p,1) — being a pair of bivariate quadratic polynomials — has no more than 4 non-degenerate
isolated complex roots. Also, since we already know from Proposition 1.4 that L3 is open, and
our proof of Theorem 1.1 already showed FE3 to be non-empty, we clearly have Area(Fs3)>0.

To conclude, since the boundary curves of E3 are concave, the area of Fs3 is clearly bounded
from above by the area of the convex hull of its vertices. Maple easily yields the estimate stated
in our theorem. As for the estimate on the probability, we need only observe that the probability
is in turn bounded above by the aforementioned area, times the value of the probability density

function at the lower left vertex of Es3. (The lower left vertex is clearly the point of E3 maximizing
—(=*+v?)
any function of the form ce™ 3 |, when «, 3>0.) Via Maple once again, we are done. B

Note that our proof here in essence focussed on one reduced A-discriminant chamber, for A=
0 6 6 —6 -3 —5
[0 3 1 6 0 0 } while the proof in the last section described a collection of sets refining the
00 0 1 1 1
true reduced A-discriminant chambers. With the calculations we have already done, we can in
fact describe just the relevant A-discriminant chambers, and give the number of real roots for all
non-degenerate H, ; 3). In particular, the intersection of R?NV 4 with any sufficiently large square

is, up to diffeotopy, the curve (possessing 3 isolated points) drawn below:
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Moreover, we see that the number of relevant A-discriminant chambers is just 15 and, as detailed
in the table above, there are just 13 possibilities for the quadruple consisting of the number of roots
H,p3) in each real quadrant. A representative set of (a,b) also appears in the table above.

Appendix: Additional Computational Details

e The polynomial A(a), mentioned in Theorem 1.1 earlier, has degree 36 and very large integer
coefficients:
3210262679261654261076827566487887978952677993133439499132124128349163099562576434327
7952820698268013412793843897421809241937820493734613249461891575123312425537758926009
4708401449664848127075028378038127755754562092027528034556095987331999834544915663433
5191471292172711109872333557363189077486365006368398775222856555887438310160532137222
9840939868367077580499964669529781634305483859700433847406729339699486637419027417119
1677343178853950349445535492053230710484518653787459913256371076588915620048039630217
9165824108345732645745090223068092168071667205956501184777697109693581599911450001219
0021060312939100402048328545507441813097137891999686579129369157163047133003682719511
2576474148491188178968971094990928046998353012788258294019763901865257431609716592748
5176712503714303310868812548002393591870579471402224400077907627408487594936168612707
0180554419254116094533471440257032398826588761966575912769581369511754467131302937485
9803482676720522828203332747369132717639329813267827737217645582653087186244634244831
5574538386240294871500440921685897086371334908759758652247944309462173537301927020295
8773775409593668716728119104668823633548823001738441866271417933408593742026621020258
1725311710379416870966837503915668902011962778549286051461092779320499487543475371639
73825423018619649916928a36 + (35 other terms with even larger coefficients...)
—507843069055560760365941682812940423454044079836693079407832722631986588931262081035
9174116130357830889181434674146134635571702204278324732998975241191996815002956993904
4898779165619818752665252031191683527011106697135066433916391557934635829075238202291
5561234431877468443451538850477714730752450210735796746065012643301766940730739425536
5691339112296325799604428107853066091699227540788401223255095133696217501532578745703
6813258893743558563644723256590415137859948899025019355611394340921928106974650343641
1368498432811527445698240562823637678507398354302606447900795185661091299252473937747
0836095406234156608515337374918866861294384330788684280463230841923361044394236585303
1281056653677973316739608636384414336128462920966652798985732351057806079733875327195
6866900690608872165346245784713273899319170572197839472637199228861276100271077183590
4781581201401512033355830065550516724506096765935236630098440108977135292557469852493
3375726046584497681364986448069799802834475225201489783837708338842560163278871989125
4834115816370155677920259625743864275276249129840945487122767720970417249911766085000
1713671696103747878888192972783838633889216210486911630010718464951590673119477373846
2410873969061035486721486412588065628663508063028366883426485108889941041090486959928
2867239514127558104263889813304619189995806503190188771758815556004388692589767155179
1874218376757463391456234951128078427542641981595750166889047250151634216308593 750000
00000000000000

We point out that there are 85 digits per line above, the largest coefficient of A has 1460 digits,
and A is irreducible in Za] (verified via Maple). The full polynomial can be downloaded from
http://www.math.tamu.edu/"rojas/nodepoly.html .

e A bit later, in the proof of Theorem 1.1, we used the critical points method to study the com-
plement of a reduced discriminant variety in (R*)2. The locations (to 10 decimal places), and
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dispositions, of the underlying vertical lines L; and critical values are tabulated below:

—1.8562718399 | isolated point (on line x = y), root of C*

—1.1581041767 | isolated point (y coordinate equal to = coordinate of next isolated point), root of A*
0 the b-axis

1.24487176148 | a-axis intersection

1.41544129863 | cusp (appearing in Figure 4.7), root of B*

1.41666026637 | cusp (appearing in Figure 4.7), root of B*

1.41767594900 | node (appearing in Figure 4.7), root of C*

1.41790510558 | node (appearing in Figure 4.7), root of A*

1.41821476967 | node (appearing in Figure 4.7), root of A*

1.41951679775 | cusp (appearing in Figure 4.7), root of D*

1.43683087662 | node, root of A*

1.47813022442 | node, root of A*

1.48488178680 | node, root of C*

1.59316011321 | node, root of A*

1.60149022139 | node, root of A*

1.92733319557 | isolated point, (y coordinate equal to = coordinate of preceding isolated point), root of A*

2.45494131563 | node, root of A*

2.47089273858 | node, root of A*

e Finding the the aforementioned critical values took just over 30 minutes, using univariate
resultants within Maple 10, on Rojas’ dual 2.2Ghz Opteron Linux workstation with 4Gb
memory. In particular, the locations were certified via use of the realroot command of Maple,
which uses Sturm-Habicht Sequences [Stu35, Hab48, Roy96, LMO01] to find intervals (with arbitrar-
ily small size and rational endpoints) containing exactly the real algebraic numbers needed.

e Finding the location of the critical points, and thus certifying the isolated points, took close
to b days. For the latter computation, we used the gsolve command, and took advantage of the
fact that the underlying reduced discriminant is a composition of a low degree polynomial with low
degree monomials (cf. Remark 4.5).

e The aforementioned refinement, 7™, of the reduced A-discriminant complement turns out to have
exactly 125 connected components. This was derived by picking rational numbers a; interlacing the
locations of the vertical lines L;, and then computing isolating intervals for the real roots of R(a;, b).
Finding representative points within each such component then simply amounted to picking rational
numbers bE-Z)
(ai, b](-l)), and each such point was fed into a gsolve computation to find a rational univariate
reduction (RUR) for H (a' 4 5 - Bach such RUR was then fed into Maple’s realroot command,

Y5

interlacing these roots. In other words, the representative points are of the form

and in this way we found the number of real roots of every H(,y3) in the reduced discriminant
complement. One can definitely see in hindsight  after the proof of Theorem 1.2 in Section 5
that there was redundancy in our particular family of chosen H(,j 3)-

e The approximations to the 5 isolated roots of H44/3144/31,3) in the positive quadrant were com-
puted by Jan Verschelde (via his software package PHC-pack [Ver06]) during the October 2005
Midwest Algebraic Geometry Conference at Notre Dame University. The computation took a
fraction of a second on a standard lap-top computer.

e For any square matrix M, let (M) denote its largest singular value, i.e., the positive square root
of the largest eigenvalue of M M. The computation of the a-invariant for the Haas family can be
greatly simplified by the following observation, which follows from a routine calculation by hand:
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622 1B2,2 1
Proposition 5.1. Let z=(z1,2)€C?, M_1(z):= {@ o, 2

5

a2 — 1 623

it <3> 237". (G> <
31\ k 1 k)2

k-1
.03
o (M_1(2)My(2)) < <‘M1(Z)H(44/31144/3173)(z)|> forall ke{2,....6}. A

-1
} , and for any k€ {2,...,6}

sett My(z):= . Then a(H(g 44 3),z> <.03 is implied by the truth of

31731

Note that the right-hand norm is a vector norm. The above simplification allows one to apply
Theorem 4.4 using just rational operations, after some minor observations involving characteristic
polynomials of 2 x 2 matrices. Using Maple’s arbitrary precision arithmetic, one can then easily
check that just 6 digits of accuracy (for the 5 putative approximate roots preceding Remark 4.8)
suffices to yield a values below the critical threshold of 0.03.

e A skeptical reader may certainly doubt the correctness of the underlying implementations of
Grobner bases, Sturm-Habicht sequences, and arbitrary precision arithmetic within Maple — but
hopefully not all at once. This was one motivation behind our use of Alpha Theory.

e The locations of the vertical lines L1, ..., L1g — which were central in our proof of Theorems 1.1
and 1.2 were independently verified by Bernard Mourrain (via the INRIA Sophia-Antipolis
software package synaps) and Fabrice Roullier (via the INRIA Rocquencourt software package
salsa), shortly after the September 2006 IMA Tutorial on Algebraic Geometric Methods in Engi-
neering.
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Note Added in Proof: In July 2006, Andrew Niles, an NSF sponsored undergraduate student
(DMS-0552610) in the second author’s 2006 REU class at Texas A&M University, found a 2 x 2
real polynomial system — consisting of a degree 6 trinomial and a degree 141 tetranomial — with
exactly 7 isolated roots in Ri. See [GNRO7] for further results in this direction, including new
bounds on diffeotopy types.

Also, around the same time Martin Avendano, a Ph.D. student at the University of Buenos
Aires, found a new upper bound for the number of real intersections of a line and an m-nomial
[Kri06, Ave07]. In our notation, this means that 2 X 2 real fewnomial systems of type (3,m)

8When i ¢ {0,...,;}, we define (‘Z) =0.
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with integer exponents and first polynomial of degree 1 — never have more than 2m — 1 isolated
roots in R%r. The latter bound is a serious improvement over the current best general bound of

2m —2 [LRWO03, Thm. 1 (a)]. ©
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